GD&T

Review

- Orthographic Projection
- Dimensioning

Manufacturing Error

- What are the important properties of a billiard ball?
- Why would those properties vary?
- How much variation in those properties are we ok with?

Manufacturing Error

Plus/Minus Tolerancing

GD&T

What is this telling us?

Envelope Rule

Perfect form at Most Material Condition (MMC M)

GD&T Characteristics

Туре	Application	Characteristic	Symbol	Datums	Shape of tolerance zone
Form	Single Feature	Straightness		Datums	Parallel lines or planes,
					cylinder
		Flatness		not	Parallel planes
		Circularity	0	allowed	Concentric circles
		Cylindricity	$\not >$		Concentric cylinders
Profile	Single or	Profile of line	\cap	Datums required*	2D uniform boundary
	Related Feature	Profile of surface	\Box		3D uniform boundary
Location	Related Feature	Position	Ф		Parallel planes, cylinder,
					sphere, cone
		Concentricity	O	Datums required	Cylinder
		Symmetry	-		Parallel planes
Orientation		Parallelism	/		Parallel planes, cylinder
		Perpendicularity			
		Angularity	\angle		
Run-Out		Circular Runout	A		Concentric circles,
					parallel circles
		Total Runout	2A		Concentric cylinders,
					parallel planes

* There are some exceptions when profile and position may not require a datum.

Tolerance Exercise

SECTION A-A

Exercise

- What are the important features you want to control?
- Sketch the tolerance zone on the drawing

Bonus Tolerance

Bracket Example

Perfect MMC Hole

Larger Hole, Larger Tolerance

MMC Hole

10mm diameter hole 1mm diameter tolerance zone

Larger Hole

11mm diameter hole2mm diameter tolerance zone

	Hole Diameter	Posit	ion T	on Tolerance	
MMC	10	1			
	11	2			
LMC	12	3			
- Ø 12 10					
	$\oplus (\emptyset 1)$	M	Α	В	С

As the hole diameter increases from MMC within the limits of size the position tolerance will increase by the same amount

А

As the hole diameter increases from LMC within the limits of size the position tolerance will increase by the same amount

LMC Tolerance

12mm diameter hole 1mm diameter tolerance zone

LMC Tolerance

11mm diameter hole2mm diameter tolerance zone

LMC Tolerance

10mm diameter hole 3mm diameter tolerance zone

Where Do the Numbers Come From?

- Calculations
 - Engineering
 - Fit (See Section 16-17)
- Empirical Data
- Cp, Cpk

Floating Fastener

Min Hole-Max Fastener = Diametric Tolerance

Floating Fastener

Min Hole-Max Fastener = Diametric Tolerance

Fixed Fastener

Min Hole-Max Fastener = Sum of Diametric Tolerances

Fixed Fastener

Min Hole-Max Fastener = Sum of Diametric Tolerances

Fastener Formula

- Floating: Min Hole-Max Fastener = Diametric Tolerance
- Fixed: Min Hole-Max Fastener = Sum of Diametric Tolerances

Terminology

- **Datum**: Theoretically exact point, line, plane or combination
- **Datum Feature**: Actual feature on the part
- **Datum Feature Simulator**: Manufacturing equipment contacting the datum feature
- Simulated Datum: Actual point, line, plane or combination derived from the datum feature simulator

Datum Reference Frame Exercise

SECTION A-A

Exercise

- What are options for the datum reference frame?
- How would a different reference frame affect the resulting part?

General Methodology

- Design the product
- Setup the datum reference frame
- Pick the GD&T controls
- Pick the tolerance sizes

Where to go from here

- Pocket Guide
- Textbooks
- ASME Y14.5
- Library of drawings (for large companies)
- Consultants

