

US DOL SPONSORED TAACCCT GRANT: TC23767
PRIMARY DEVELOPER: Jim Blair – Henry Ford College

RELEASE DATE 2/22/2016

VERSION v 001

PAGE 1 of 8

Basic Electricity – Unit 15: Inductance and AC

Lab 1

Objective

The purpose of this lab is to discover how series resonant RLC circuits behave. An important property of this circuit is its ability to resonate at a specific frequency. This is an important concept necessary when designing circuits which will be used for: bandpass filters, band-stop filters, low-pass filters or high-pass filters.

Safety and PPE Usage:

Care must be taken when working with electrical devices. If you are not familiar with electrical safety rules please go to that section NOW.

In the lab NO food or beverages are allowed.

Use all Hand Tools in a safe and proper way. If in doubt ask your instructor.

Possible hand tools needed for this lab:

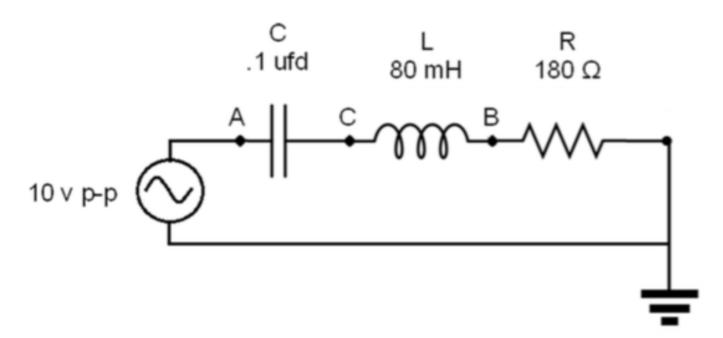
- Needle nose pliers
- Small screwdriver
- 3. Large screwdriver
- Wire strippers
- 5. Diagonal pliers
- 6. Soldering iron

Possible equipment needed for this lab:

- 1. DC power supply
- 2. AC signal generator
- Oscilloscope
- Multimeters
- Breadboard
- Computer
- Test leads
- 8. Oscilloscope probes
- 9. hook up wire

Parts list required for this lab:

US DOL SPONSORED TAACCCT GRANT: TC23767
PRIMARY DEVELOPER: Jim Blair – Henry Ford College


RELEASE DATE 2/22/2016

VERSION v 001

PAGE 2 of 8

Basic Electricity – Unit 15: Inductance and AC

- .1 ufd capacitor
- 2, 80 mH coil
- 180 ohm resistor.
- Construct the following circuit.

- Set up the signal generator to 10 v p-p at 100 hz.. Make sure your signal generator is set to sine wave output. Monitor this with channel 1 of an oscilloscope. This can be accomplished by connecting channel 1 of the oscilloscope to point A in the circuit.
- Place the oscilloscope probe at Point B once the signal generator is adjusted as in step 1. The voltage at Point B will be small compared to step 1. This will mean an adjustment of the oscilloscope settings in order to read the output at Point B.
- Record the p-p voltage measured in step 3 in data table 1. provided. This is the voltage developed across the resistor in the circuit.
- 4. Adjust the signal generator frequency to the given values listed in data table 1. Each change in frequency will mean a change in voltage developed across the resistor of the circuit. Record the voltage measured across the resistor for each new frequency. Once again, this is the voltage at Point B.

US DOL SPONSORED TAACCCT GRANT: TC23767
PRIMARY DEVELOPER: Jim Blair – Henry Ford College

 RELEASE DATE
 2/22/2016

 VERSION
 v 001

 PAGE
 3 of 8

Basic Electricity – Unit 15: Inductance and AC

Lab 1

DATA TABLE 1.

FREQUENCY in HZ.	VOLTAGE p-p at POINT B
100	
200	
300	
400	
500	
600	
700	
800	
900	
1,000	
1,100	

FREQUENCY in HZ.	VOLTAGE p-p at POINT B
1,200	
1,300	
1,400	
1,500	
1,600	
1,700	
1,800	
1,900	
2,000	
2,100	
2,200	

FREQUENCY in HZ.	VOLTAGE p-p at POINT B
	at route b
2,300	
2,400	
2,500	
2,700	
3,000	
4,000	
5,000	
8,000	
10,000	
15,000	
20,000	

5.	On the provided	l semi-log graph	paper plot the	output p-p voltage	vs. the frequency.
Yo	u will need to pu	it several sheets	together to fit	your results.	

 Describe what your plotted data shows. Give a brief description in your own words what you have learned about series resonant RLC circuits. 					

Note: The frequency at which the voltage across the 180 Ω resistor peaked to a maximum value is called the series resonant frequency.

US DOL SPONSORED TAACCCT GRANT: TC23767
PRIMARY DEVELOPER: Jim Blair – Henry Ford College

RELEASE DATE 2/22/2016

VERSION v 001

PAGE 4 of 8

Basic Electricity – Unit 15: Inductance and AC

Lab 1

Another method of finding this value is using the following equation.

$$F_{\text{tensorers}} = \frac{1}{(2)\pi \sqrt{LC}}$$

7. Use the formula and calculate your frequency of resonance.

US DOL SPONSORED TAACCCT GRANT: TC23767 PRIMARY DEVELOPER: Jim Blair - Henry Ford College

RELEASE DATE **VERSION PAGE** 2/22/2016 v 001

5 of 8

Basic Electricity	y – Unit 15: Ind	luctance and AC
--------------------------	------------------	-----------------

Calculated Fresonance =
 Examine your graph and determine the actual value of FResonance (NOTE: This will be the Maximum value plotted on your graph)
Actual Fresonance =
 Use the following formula and determine the percent difference between your actual and calculated values of Fresonance.
% Difference between actual and measured values = {(FR actual - FR calculated) / FR actual } x 100
Your % Difference =
10. Adjust the signal generator to your actual resonant frequency value. This is the value you found in step 8.
 Measure the p-p voltage across the 180 Ω resistor.
VResistor =
12. Use Ohm's Law and determine the current flow through the 180 Ω resistor.
Resistor =
Move the oscilloscope probe to Point C. Measure the voltage at Point C.
Voltage at Point C =

VERSION PAGE

RELEASE DATE

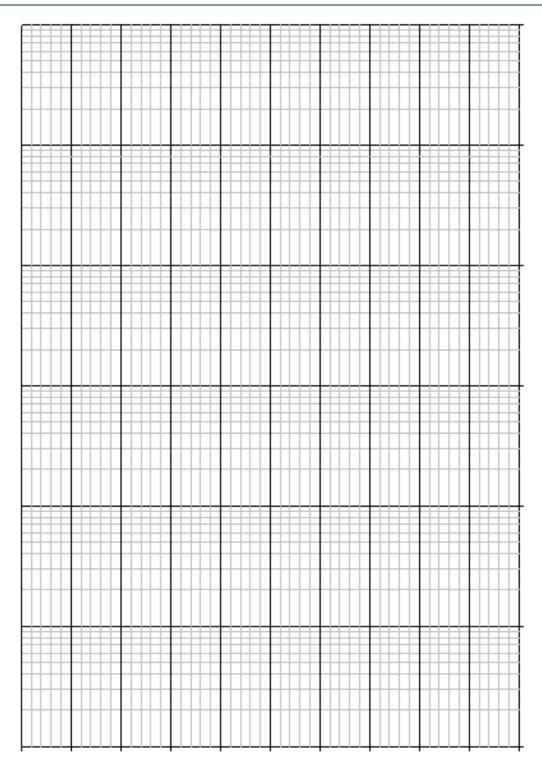
2/22/2016 v 001 6 of 8

US DOL SPONSORED TAACCCT GRANT: TC23767
PRIMARY DEVELOPER: Jim Blair – Henry Ford College

Basic Electricity – Unit 15: Inductance and AC

14. Move the oscilloscope probe to Point A in the circuit. Measure the input voltage to the circuit at Point A. Note: Point A is the output of the signal generator. Point A is also the input to the circuit.
Input voltage at Point A =
 Give a statement for your explaination of why the voltages at Point A and Point C are what they are.

15. Give a statement for your explaination of why the voltages at Point A and Point 0 are what they are.	С


VERSION PAGE

RELEASE DATE

2/22/2016 v 001 7 of 8

US DOL SPONSORED TAACCCT GRANT: TC23767
PRIMARY DEVELOPER: Jim Blair – Henry Ford College

Basic Electricity – Unit 15: Inductance and AC

US DOL SPONSORED TAACCCT GRANT: TC23767
PRIMARY DEVELOPER: Jim Blair – Henry Ford College

 RELEASE DATE
 2/22/2016

 VERSION
 v 001

 PAGE
 8 of 8

Basic Electricity – Unit 15: Inductance and AC

Lab 1

SAFETY DISCLAIMER:

M-SAMC educational resources are in no way meant to be a substitute for occupational safety and health standards. No guarantee is made to resource thoroughness, statutory or regulatory compliance, and related media may depict situations that are not in compliance with OSHA and other safety requirements. It is the responsibility of educators/employers and their students/employees, or anybody using our resources, to comply fully with all pertinent OSHA, and any other, rules and regulations in any jurisdiction in which they learn/work. M-SAMC will not be liable for any damages or other claims and demands arising out of the use of these educational resources. By using these resources, the user releases the Multi-State Advanced Manufacturing Consortium and participating educational institutions and their respective Boards, individual trustees, employees, contractors, and sub-contractors from any liability for injuries resulting from the use of the educational resources.

DOL DISCLAIMER:

This product was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

RELEVANCY REMINDER:

M-SAMC resources reflect a shared understanding of grant partners at the time of development. In keeping with our industry and college partner requirements, our products are continuously improved. Updated versions of our work can be found here: http://www.msamc.org/resources.html.

