Section 1

BASIC ELECTRICAL EFFECTS

Exhibits 1 through 12 are placed in the center of the book so that they may be removed easily for reference. Please remove them now so that you will have them available when needed.

Units of Electrical Measurement

1. Electrical energy comes from two main sources. The energy used in houses, on farms, and in factories comes from large generators. A flashlight gets its electrical energy from \qquad .
2. The current obtained from a battery is direct current (dc). Direct current always flows in _ direction.
3. Most of the electrical energy used in homes, factories, and businesses is distributed as an alternating current, that is, it flows first in one
\qquad and then \qquad .
4. One basic unit of measurement of electrical energy is the coulomb.

A coulomb is the same kind of measurement as a gallon; therefore, a coulomb is a measurement of (pressure/quantity).
5. A better known unit of measurement is the ampere (abbreviated amp). An ampere represents the a mount of electrical current which provides one coulomb of electrical energy in one second. An ampere is a unit of (rate of flow/pressure).
6. A third unit is the unit of resistance, the ohm. Wires that carry an electrical current never do it perfectly; they always offer some \qquad .
7. Resistance is expressed as so many \qquad .
8. Fill in the chart.

Unit name	Unit of
coulomb	quantity
	rate of flow (current)
	resistance to flow

9. The fourth unit of measurement is the volt.

An electrical "push" of one volt is needed to cause one ampere to flow through a resistance of one ohm. The volt is a unit of (quantity/rate/pressure).
10. To make a current of one ampere flow through a resistance of one ohm requires an electrical pressure of one \qquad _.
11. Electrical pressure is measured in \qquad , current is measured in \qquad , and resistance is measured in \qquad -

Ohm's Law

12. The relationship of volts, amperes, and ohms can be expressed as a mathematical equation.

1 volt $=1$ ampere $\times 1$ ohm (the ohm symbol is Ω).
To cause 5 amp to flow through 1 ohm requires
\qquad volts.
13. The statement, $v=a m p \times o h m s$, is known as Ohm's law. According to Ohm's law, if a pressure of 10 volts is applied to 2 ohms (10 volts $=a \mathrm{mp} \times 2$ ohms), a current of \qquad amperes results.
14. A pressure of 25 volts causes 2 amperes to flow through an unknown resistance.
$\mathrm{v}=\mathrm{amp} \times$ ohms; ohms $=$?

Ohm's law can be applied to find that the resistance is \qquad ohms.
15. Find the unknown quantity.

Volts	Amperes 30	Ohms
100	10	10
		50

16. Ohm's law is frequently written in this form:

$$
E=I R
$$

E is the electromotive force or pressure measured in \qquad -

I is the intensity of the current measured in
\qquad .
R is the resistance measured in \qquad -
17. Ohm's law states that $E=$ \qquad -
18. Ohm's law is also expressed as

$$
I=\frac{E}{R} \text { and as } R=\frac{E}{I} .
$$

Both equations are just different algebraic forms of the same equation, $E=$ \qquad .

Although the two forms

$$
I=\frac{E}{R} \quad \text { and } \quad R=\frac{E}{I}
$$

can be used when solving for I or for R, it is about as easy to use the simpler form, $E=I R$, putting in the two known values. This makes it unnecessary to remember the two equations in the fraction form.
19. In the equation $E=I R, E$ is measured in
\qquad , I in \qquad , and R in -

Symbols

20. A special kind of shorthand is used to describe electrical circuits.

Exhibit 1 shows some of the symbols used in drawing electrical circuits.

A straight line indicates a \qquad -
21. Here is a simple circuit.

This circuit shows that a (l) \qquad is
connected by conductors to a (2)
and a (3) \qquad .

Series and Parallel Circuits

22. In the circuit above, the lamp is not lit because the switch is \qquad .
23. The simple circuit above can be traced from the battery through the switch, through the lamp, and back to the battery.

A circuit that can be traced through each component in order is called a (series/parallel) circuit.

Figure 1

Figure 2
24. Here is another series circuit.

This circuit consists of two \qquad connected in series to a battery.
25. Look at this circuit.

The parts in this circuit are connected in
\qquad .
26. In the circuit above, if one could follow a single electrical charge from one end of the battery back to the other, it would demonstrate that in a series circuit, (the same/a different) current flows through every part in the circuit.
27. Look at this circuit.

Because the resistors R_{1}, R_{2}, and R_{3} are connected in series across the battery, the \qquad current flows through them all.
28. Meters to measure current (ammeters) can be connected in the circuit like this.

If the ammeter at R_{1} reads 2 amperes, the meter at R_{2} reads \qquad amperes and the meter at R_{3} reads \qquad amperes.
29. No matter where current meters are connected in a series circuit, the meters read the
\qquad current.
30. In this circuit, a voltmeter is connected across (in parallel with) the battery to measure its voltage.

The meter reads 6 volts. If the meter were connected to points A and B across the resistor, it would read \qquad volts.
31. Two voltmeters are connected as shown in this circuit.

Meter V_{2} reads 10 volts. Meter V_{1} must read
\qquad volts.
32. In a circuit such as the one above, the voltage across the battery and the voltage across the resistor are \qquad .
33. Look at this circuit.

The current flowing through R is amperes ($\mathrm{E}=\mathrm{IR}$).
34. Calculate the voltage of the battery.

Battery voltage $=$ \qquad .
35. Compare the way in which a voltmeter and an ammeter are connected in a circuit.

The \qquad is connected across (in parallel with) the battery.

The \qquad is connected in series with
the other components.
36. An ammeter must always be connected in series with the components of the circuit in which the flow of electricity is being measured because the same
\qquad must flow through it and the other parts.
37. A voltmeter must be connected across (in parallel with) the component in which voltage is being measured because the volt is a measurement of electrical \qquad , not flow.
38. Identify each ammeter with an A, each voltmeter with a V.

39. Look at this circuit.

The circuit is a (series/parallel) circuit.
40. Here is another circuit with one battery and two resistors.

The resistors are connected across the battery in (series/parallel).

Resistance in Series Circuits

41. Look at Exhibit 2. Figure 1 is a circuit consisting of two ammeters, A_{1} and A_{2}, two switches, S_{1} and S_{2}, and two resistors, R_{1} and R_{2}, connected in
\qquad -
42. In Figure 1, if S_{1} and S_{2} are closed and if A_{1} reads 2 amperes, A_{2} must read \qquad amperes.
43. In Figure 1, if S_{1} is open, A_{1} and A_{2} read
\qquad amperes.
44. In Figure 1, if S_{1} is closed and S_{2} is open, the ammeters read \qquad amperes.
45. In a series circuit, the current flowing throughout the circuit is (the same/different) no matter where it is measured.

In a series circuit, if a switch is open anywhere in the circuit, current (flows/does not flow) in that circuit.
46. Look at Figure 2 in Exhibit 2. S_{1} is closed, the battery voltage is 10 volts, and R_{1} is a $10-0 \mathrm{hm}$ resistor. According to Ohm's law, the current through R_{1} is \qquad amperes.
47. Now assume that S_{2} is closed, the battery voltage is 10 volts, and R_{2} is a 5 -ohm resistor.

The current through R_{2}, as measured by A_{2}, should be \qquad amperes.
48. If R_{1} is 10 ohms and R_{2} is 5 ohms, the currents through A_{1} and A_{2} (are/are not) equal.
49. In a series circuit, the current throughout the circuit is the same.

In a parallel circuit, the currents in the parallel branches (are/need not be) equal.
50. In Figure 1, if S_{1} is open, the current through $\left(R_{1} / R_{2} /\right.$ both R_{1} and $\left.R_{2}\right)$ is interrupted.
51. In Figure 2, if S_{1} is open, the current through $\left(R_{1} / R_{2} /\right.$ both R_{1} and $\left.R_{2}\right)$ is interrupted.
52. Assume that Figure 1 shows S_{1} and S_{2} closed. If S_{2} is then opened, current (continues to flow/ no longer flows) through R_{1}.

Current (flows/does not flow) through R_{2}.
In Figure 2, assume that S_{1} and S_{2} are in the positions shown. Current (flows/does not flow) through R_{1}.

Current (flows/does not flow) through R_{2}.
53. Opening one branch of a parallel circuit (affects/ does not affect) the other parallel branches in that circuit.
54. Look at Exhibit 3. In Figure 1, R_{1} and R_{2} are in series and the current must flow through both of them. The total resistance of R_{1} and R_{2} is the
\qquad of the two resistances.
55. In Figure 1, the two resistors, R_{1} and R_{2} ($R_{1}=6$ ohms, $R_{2}=4$ ohms), can be replaced by a single \qquad -ohm resistor without affecting the current.
56. In a series circuit, the total resistance in the circuit is (the sum of the individual resistances/equal to the single largest resistance).

Resistance in Parallel Circuits

57. In Figure 2, R_{1} is 6 ohms. R_{1} is connected across the 24 -volt battery. According to Ohm's law, the current through R_{1} must be amperes.
58. R_{2} is a $4-o h m$ resistor and is also connected across the 24 -volt battery. The current through R_{2} is \qquad amperes.
59. The battery is causing 6 amperes to flow through R_{2} and 4 amperes to flow through R_{1}.

The total current furnished by the battery is
\qquad amperes.
60. According to Ohm's law, if a 24 -volt battery is causing a 10 -ampere current to flow through a resistance, the value of that resistance must be
\qquad ohms.
61. Connecting a 4-ohm resistor and a 6-ohm resistor in parallel causes them to act like a single 2. 4 -ohm resistor.

The effective resistance of a 4 -ohm resistor and a $6-$ ohm resistor connected in parallel is (calculated as the sum of the resistances) calculated in a different way).

EXHIBIT 3

Figure 1
Figure 2

EXHIBIT 4

EXHIBIT 5

