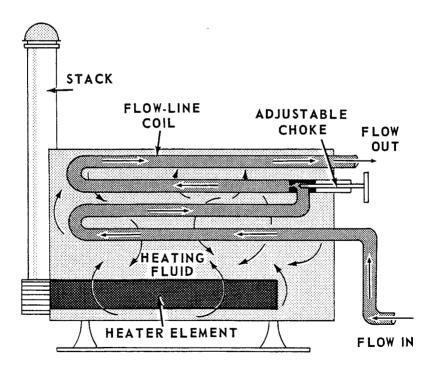
Flow-Line Heaters

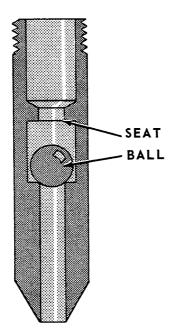

135. In many wells, surface chokes are protected by a *line heater*.

The heater increases the _____ of the fluid in the line.

136. The pressure drop across a choke cools the fluid and may cause hydrates or paraffin to deposit out.

Line heaters help prevent _____ and _____ from plugging the choke.

137. Here is a diagram of a line heater.

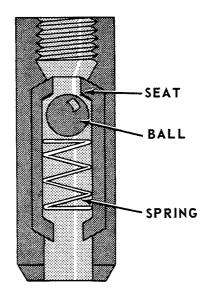

The heater is a tank filled with hot _____ that circulates.

138.	A gas burner keeps the fluid (usually water)
139.	Fluid from the well is carried through a of piping.
140.	The choke is installed at the
141.	Well fluid is heated (before/after/both before and after) it flows through the choke.
142.	The upstream heating helps prevent and from forming at the choke.
143.	The <i>downstream</i> heating helps any solids that do form at the choke.
144.	Line heaters must be periodically inspected and maintained.
	The burner must be supplied with
145.	The heater must be filled with
146.	The pressure gage at the heater must be checked.
	If pressure is rising, the is probably plugging up.
Tubing Valves and Tubing Plugs	
147.	To install or repair a master valve, flow must be blocked from the valve.

148. A *tubing valve* screws into a mandrel or hanger in the tubing head.

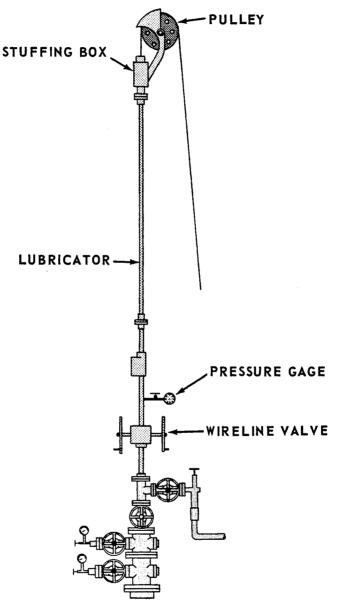
The tubing valve may be used when a ______valve is installed or replaced.

149. A tubing valve may be a ball-and-seat valve.



So that tubing pressures will close the valve, the seat must be (above/below) the ball when the valve is installed.

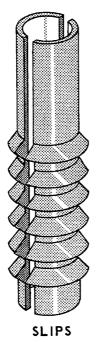
150. A tubing valve is run through the open master valve on an *installing tool*.

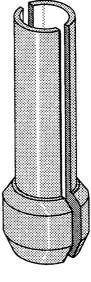

The installing tool is used to screw the valve into the mandrel or hanger in the ______ head.

151. A tubing plug is set in the tubing.

The tubing plug blocks flow (above/below) the tubing head.

- 152. Like the tubing valve, the tubing plug may use a ______-and-seat to block flow.
- 153. High tubing pressures force the ball (up/down) on its seat to plug the tubing.
- 154. Subsurface equipment may be run into the well-bore on a *wire line*.




The wire line is run from a pulley down through a lubricator set on the ______.

155. The lubricator is made up of short sections of tubing. To prevent leakage, there is a stuffing box at the top of the _____. 156. Equipment is run into the lubricator while the master valve is closed.

Then, with the lubricator sealed at the top around the wire line, the master valve is ______, and the equipment is lowered into the ______.

157. Subsurface equipment may be set in the tubing by *slips* or *dogs*.

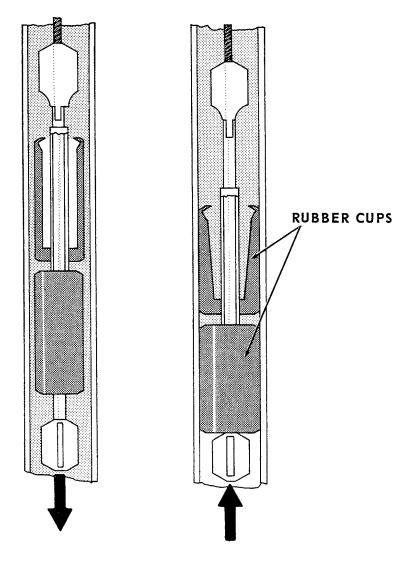
DOGS

Ridged slips hold the equipment by biting into the ______ wall.

- 158. Dogs fit into seating shoes or nipples in the tubing. Equipment with (slips/dogs) can be set at any depth.
- 159. Equipment with dogs must be set where there is a _______ shoe or nipple in the tubing.
- 160. Subsurface equipment may also be *sealed* with rubber cups to prevent ______ around the equipment.
- 161. A tubing plug is run in on a wire line.

The tubing plug is set by _____ or _____ or _____

162. A tubing valve is _____ into the tubing head.


163. Wireline-running equipment is not needed to install the tubing (valve/plug).

Swabbing Tools

164. To run or pull tubing, the well must be *killed* by filling the tubing and annulus with heavy muds or fluids.

High-density fluids prevent flow from the reservoir by (increasing/decreasing) hydrostatic bottom-hole pressures.

- 165. Before the well can flow again, these dense fluids must be _____.
- 166. A swabbing tool is run on a wire line through the Christmas tree.

While the tool is being run, the cups are (retracted/expanded).

- 167. When the tool is pulled up, the cups fill and ______ the fluid upward.
- 168. When tubing is being run or retrieved, the well must be (shut in/plugged/killed).
- 169. In wireline operations, flow is blocked by the stuffing box on the _____.
- 170. The well (must/need not) be killed to run or retrieve wireline equipment.

PACKERS

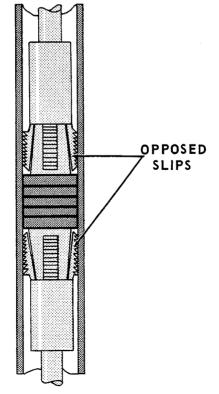
171. Suppose you are running a packer into a well-bore.

The OD of the packer must be (larger/smaller) than the casing ID.

- 172. But the packer ID must be as large as the _____ ID.
- 173. A packer (can/cannot) be run into the well-bore inside the tubing.
- 174. A packer must be set in place ______ tubing is run, or tubing must be _____ to install a packer in the well.
- 175. Or, the packer can be run in on the tubing string.

A wireline-run packer is run in (before/after) tubing is installed.

- 176. A tubing-run packer is run in _____ the tubing.
- 177. After the packer is run, it must be set, or locked in place.
 - A wireline-run packer is set on the wall of the ______ before tubing is run.

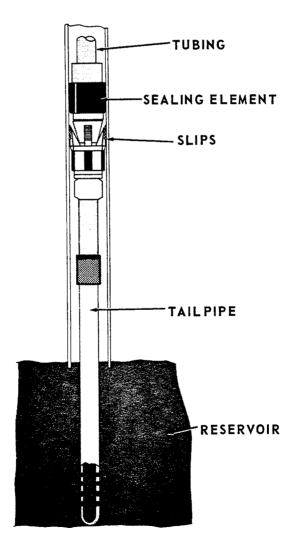

178. Wireline-run packers are usually set with a *permanent* seal to the casing walls.

Wireline-run packers are designed to be (permanent/retrievable) packers.

- 179. A tubing-run packer is made up as part of the ______ string.
- 180. Many tubing-run packers can be pulled by pulling the
- 181. Tubing-run packers may be permanent, or they may be *retrievable* packers.

A retrievable packer is usually run on (a wire line/tubing).

- 182. Packers run on a wire line are almost always ______ packers.
- 183. Packers run on tubing may be either _____ packers or _____ packers.
- 184. Here is one way a permanent packer may be set.



This packer is set by forcing opposed _____ over two wedges.

185. The upper slips help keep the packer from being pushed up by bottom-hole pressures.

The lower slips help keep the packer from moving (up/ down).

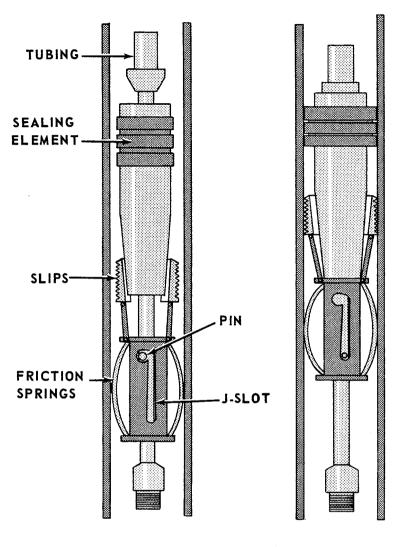
- 186. While the packer is being run, the slips are (pushed out/ held in).
- 187. The packer is set when the slips are forced to bite into the wall of the _____.
- 188. Or, the packer can be set on a tailpipe.

This tailpipe extends down to the _____ of the well.

- 189. So that fluid can enter the tubing, the tailpipe has
- 190. The weight of the _____ on the packer helps to hold the packer in place.
- 191. Some wells are completed with a casing that does not extend all the way down through the reservoir formation.

In these "open-hole" completions, a tailpipe on the ______ helps to protect the well-bore.

- 192. A hook-wall packer is set by slips biting into the
- 193. When pressure differences in the well are great enough, efficient production can be obtained with a short *tubing* string.


Then a (packer and tailpipe/hook-wall packer) would be more practical.

- 194. Most packers in use today are _____-wall packers.
- 195. Most packers are also retrievable packers.

At different times, a retrievable packer (can/cannot) be used in different wells.

- 196. A retrievable packer also can be raised or lowered in the ______ as needed.
- 197. Since packers are expensive, most packers are designed to be _____.

198. Here is one kind of retrievable hook-wall packer.

This packer has a ______ element, a set of _____, and _____springs.

- 199. The slips are used to hook the packer to the _____ of the casing.
- 200. While the packer is being run, the pin in the J-slot holds the slips in.

After the packer is run, the tubing is rotated to drop the ______ in the J-slot.

201. Then the _____ are free to move out against the casing.

- 202. In this packer, the slips are set by (raising/lowering) the tubing.
- 203. The weight of the _____ on the packer holds the packer set.
- 204. To set a packer with a tailpipe from the surface of the well, it is also the ______ that is pushed down.
- 205. A packer that is set by lowering the tubing is set in *compression*.

Pushing down on the tubing _____ the setting device in the packer.

- 206. Packers also have *sealing elements* to prevent ______ around the packer.
- 207. In a compression-set packer, the sealing element is also expanded when the tubing is _____.
- 208. Or, compression-set packers are both set and ______ by compressing the tubing.
- 209. When the packer is set and sealed, some of the weight of the tubing is supported by the _____ casing.
- 210. And, in some packers, the tubing is also supported at well bottom by the _____.
- 211. A wall packer is not supported at well bottom.

The wall packer is held by slips wedged between the ______ and the ______.

- 212. A compression-set wall packer is held in place by pressure from (above/below) the packer.
- 213. But, in many wells, bottom-hole pressures may be ______ than the weight of the tubing can overcome.

- 214. Then a compression-set packer may be ______ out of place by bottom-hole pressures.
- 215. When the J-slot and other setting mechanisms of a compression-set wall packer are *reversed*, the packer can be set by applying pressure (under/above) the packer.
- 216. Then the packer would be set by (raising/lowering) the tubing.
- 217. A *tension-set* packer is set by tension or stretch between the packer and the tubing.

Or, to set a packer in tension, the tubing is _____

- 218. When a packer is set in tension, high bottom-hole pressures (can/cannot) release the packer.
- 219. Increased bottom-hole pressure sets the packer tighter in place if the packer is set in (compression/tension).
- 220. Suppose you pull tubing in a well that has a packer set in compression.

Pulling the tubing will probably (release/set) the packer.

221. The packer may need to be released *before* tubing can be pulled if the packer is set in tension.

Trying to pull tubing with a tension-set packer could just ______ the packer in more tightly.

- 222. A well-service operator must always be told whether the packer in a well is set in _____ or in _____ before he starts operations.
- 223. Packers set in tension or compression are *mechanical* packers.

They use ______ or dogs, and rubber ______ elements to hold the packer in place.

- 224. Slips hold a piece of equipment by (mechanical/ hydraulic) force.
- 225. A packer can also be set by increasing fluid pressure inside an inflatable sealing element.

A packer that is set by high-pressure fluid is a (mechanical/hydraulic) packer.

226. Hydraulic packers are usually set by applying external pressure to the tubing string.

Applying external pressure to the tubing string causes the sealing element inside the packer to (expand / contract).

227. The sealing element in a hydraulic packer is easily contracted again.

Hydraulic packers (are / are not) retrievable packers.

228. Retrievable packers may be:

set with a tailpipe or sealed to the casing
_____;
set in ______ or set in _____;
mechanical packers or _____ packers.

- 229. A packer is installed partly to keep casing pressures
- 230. But bottom-hole pressure under the packer is usually very _____.
- 231. Since retrievable packers are made to be moved, they (may/cannot) be affected by pressure differences.
- 232. A *permanent* packer cannot be _____ once it is set.
- 233. When the packer is exposed to very great pressure differences, a (retrievable/permanent) packer is usually more practical.

- 234. Permanent packers are sealed between the walls of the tubing and the ______.
- 235. Since the tubing string may need to be pulled, the seal between a packer and the tubing is always a (permanent/retractable) seal.
- 236. All permanent seals are made to the wall of the
- 237. A permanent packer is set with a special mechanical, hydraulic, or electric setting tool.

The setting tool makes a permanent seal between the packer and the ______.

238. Suppose a packer is run into the well-bore on a wire line.

The tubing (is already/is not yet) run.

239. Before tubing is run, the packer may be wireline-run and sealed to the casing walls with a setting tool.

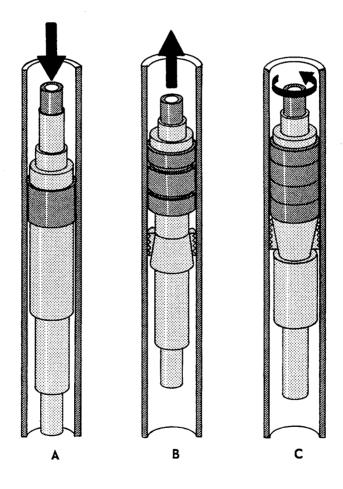
The setting tool makes a (permanent/retractable) seal.

- 240. Most wireline-run packers are _____ packers.
- 241. But not all permanent packers are wireline-run.

Some permanent packers are run in on _____.

242. The permanent packer may be set with a retractable seal on the tubing string.

Then seals are run on the ______ to seal off the bore of the packer.

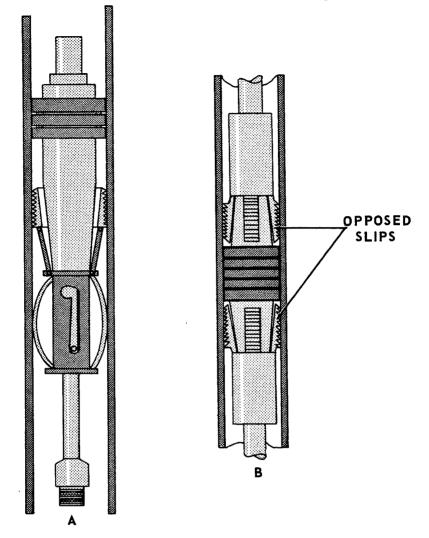

243. Permanent packers are also called drillable packers.

To remove a permanent packer from the casing, the packer is often _____ out.

244. Packers set high in the well-bore may need to be moved.

Since permanent packers cannot be moved, they are usually set (high/deep) in the well-bore.

- 245. A packer set high in the well-bore is usually a (permanent/retrievable) packer.
- 246. Let's review by looking at three ways a packer might be set.



The packer in well A is set in _____.

247. The packer in well B is set in _____.

248. Since each of these packers can be set or released by moving the tubing, they are all _____ packers.

249. Here are two packers that were run in on tubing.

The retrievable packer is (A/B).

250. Much wireline-run equipment is retrievable.

But, wireline-run packers are usually _____.

251. Wireline-run packers are usually set with a permanent seal to the walls of the _____.

The packer is run on the wire line (before/after) tubing is run.

252. Tubing-run packers may be either _____ or

BOTTOM-HOLE CHOKES AND REGULATORS