UNIT 1
 AN INTRODUCTION TO FLUIDS

1. Anything that flows is a fluid.

Oil is a \qquad .
2. Gas and water are also fluids.

Oil, gas, and water can all be made to \qquad .
3. Solid rock (is/is not) a fluid.
4. Suppose you want to move a piece of solid rock.

If the rock is not too heavy, you might just it up and carry it.
5. Moving a rock takes energy.

When a person moves a rock, the energy to move the rock is supplied by the \qquad .
6. When a rock falls from a cliff, then it is gravity that is supplying the \qquad .
7. Moving anything takes energy.

For a fluid to flow, there (must/need not) be a source of energy.
8. When a pump is forcing fluids through a well-bore, the source of energy for flow is the \qquad .
9. The source of energy for a flowing well is reservoir pressure.

A flowing well produces because of the \qquad of the fluids in the reservoir.

THE NATURE OF FLUIDS

10. Any substance that can flow and that has no definite shape is a fluid.

The oil in this tank (has a definite shape/assumes the shape of the tank).
11. This pipeline contains gas.

Gas (flows/does not flow) and has (a definite/an indefinite) shape.
12. Anything that flows and has an indefinite shape is a (liquid/gas/fluid).
13. All liquids and all gases are \qquad .

The Three States of Matter

14. Fluids, like all substances, are made up of atoms. Oil is made up of \qquad .
15. The oil and gas found in a reservoir are made up of hydrogen atoms and carbon atoms.

Hydrocarbons are substances made up only of atoms of
\qquad and atoms of \qquad .
16. Oil and petroleum gas are both called \qquad .
17. Water is made up of hydrogen atoms and oxygen atoms $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

Water (is/is not) a hydrocarbon.
18. Different oils and petroleum gases are made up of different combinations of hydrogen and carbon atoms.

A molecule is a combination of \qquad .
19. $\mathrm{Or}, \mathrm{H}_{2} \mathrm{O}$ is (an atom/a molecule) of water.
20. CH_{4} is (an atom/a molecule) of methane.
21. A substance, water for example, can exist as a gas, a liquid, or a solid.

Ice is a \qquad .

Water is a \qquad .
22. We can change solid ice to liquid water by adding
\qquad
We can change the liquid water to a gas by adding even more \qquad .
23. Molecules have attractive forces which hold them together.

The attractive forces are strongest between the molecules of a (liquid/solid/gas).
24. The largest spaces are found between the molecules of a \qquad .
25. In a solid, the attractive forces are strong enough to hold the \qquad together in a fixed shape.
26. So a solid (can/cannot) be made to flow.
27. Compared with the molecules of a gas, liquid molecules are (closer together/farther apart).
28. Molecules are always in motion. Heat causes the motion of molecules.

Heating a substance (speeds up/slows down) the movement of its molecules, and causes the molecules to move (closer together/farther apart).
29. Molecules move faster in a (liquid/gas).
30. Molecules are more likely to hit each other and bounce away in another direction in (liquids/gases).

The Compressibility of Gases

31. Because gas molecules are so far apart, gases are compressible.

Gases can be compressed by squeezing the \qquad closer together.
32. When a gas is compressed, it occupies (more/less) space.
33. Now the gas in the cylinder is replaced with a liquid.

When the piston is pushed down, the water (is easily compressed/is forced from the container).
34. Because liquid molecules are already close together, a
\qquad cannot be compressed very much.
35. Liquids are practically incompressible; gases are highly compressible.

Water below its boiling point is (compressible/ practically incompressible).
36. At high enough temperatures, the water vaporizes and becomes a gas.

Water vapor, or steam, (is/is not) compressible.
37. Compressibility is a characteristic of gases.

Gases are compressible because of the amount of
\qquad between gas molecules.
38. Since gas molecules are so free to move, a small amount of gas can fill even a large container.

The molecules in a small amount of gas move (together/ apart) to fill the larger container.
39. A gas always expands to fill a larger space.

And a gas can be \qquad into a smaller space.
40. The space something occupies is its volume.

Gases change both their shapes and their \qquad to fit the available space.
41. Because the molecules of a liquid are already close together, liquids change only their (volumes/shapes).

Density

42. Some substances are lighter than others.

For example, gases are \qquad than liquids.
43. A dense forest is one in which the trees are close together.

In a dense substance, the molecules are (close together/ far apart).
44. Molecules have weight; in differing substances, the molecules may be more or less densely packed, and the substances will have different unit weights. Density is a term used to express a substance's weight per unit volume, for instance, pounds per cubic foot.

A cubic foot of water weighs (more/less) than a cubic foot of oil.
45. (Water/Oil) has the higher density.
46. The density of a substance depends on the weight of the molecules and on the number of molecules in a cubic foot.

When molecules are packed closer together, the substance has a (higher/lower) density.
47. Water molecules are packed very close together, so water has a (high/low) density.
48. Gases have (high/low) densities.
49. Compressed gas has a (higher/lower) density than noncompressed gas.
50. To compare the densities of different substances, you must weigh them at equal temperatures and pressures.

At different temperatures and pressures, a cubic foot of fluid will contain a different number of molecules, and so the fluid will have a different \qquad .
51. Specific gravity is another way of indicating the heaviness of a fluid.

The specific gravity of a liquid is its weight compared to the weight of an equal volume of water.

The specific gravity of water is 1 ; the specific gravity of oil is (more/less) than 1.
52. The specific gravity of a gas is its weight compared to the weight of an equal volume of air.

A gas with a specific gravity of less than 1 is (heavier/ lighter) than air.
53. Density and specific gravity are ways of indicating the
\qquad of a fluid.
54. Different fluids have (different/the same) densities and specific gravities.
55. Liquids have (higher/lower) densities than gases.
56. Oil has a (higher/lower) density than water.

PRESSURE

57. Fluids exert a force on everything they touch.

The gas molecules in this cylinder move rapidly in (one direction/all directions).
58. As they move, the molecules hit each other and the walls of the \qquad .
59. The force of one molecule is too slight to be measured, even with the finest instruments.

But the sum of all this molecular motion can be measured.

Pressure gages measure (the force of one molecule/ the total force of millions of molecules).
60. Like the pressure of a gas, the pressure of a liquid is exerted on everything the liquid touches.

The oil in this vented storage tank exerts \qquad on the tank.
61. The oil also exerts \qquad on the air above it.
62. And the air exerts \qquad on the oil.
63. Pressure is exerted by (liquids only/gases only/ all fluids).

And fluids exert pressure on everything they \qquad .

PSI
64. Pressure is usually measured in pounds per square inch.

1/2 LB
(LEAD)

This block of lead weighs about \qquad pound.
65. The block exerts a force of \qquad pound on the surface underneath it.
66. Area is the length times the width.

1/2 LB

This block rests on an area of \qquad square inch.
67. It has a weight of \qquad pound.
68. So the pressure caused by the weight of the block is
\qquad pound per square inch.
69. This block weighs $1 / 2$ pound.

1/2 LB

But the area it rests on is \qquad square inches.
70. One square inch under the block has a weight of (1 pound $/ 1 / 4$ pound) resting on it.
71. So this block exerts a pressure of \qquad pound per square inch on the surface below it.
72. Pressure can be defined as force acting on a unit of area.
(Pounds/Square inch) is a measure of area.
73. Blocks A and B weigh the same amount.

$$
10 \text { LB }
$$

But they exert different pressures because they are acting on areas of \qquad sizes.
74. The force caused by the weight of block B is spread out over a \qquad area.
75. All three of these blocks exert the same force on the table below them.

But this force is concentrated in a smaller area under block ($\mathrm{A} / \mathrm{B} / \mathrm{C}$).
76. The pounds per square inch (PSI) is greatest under block ($\mathrm{A} / \mathrm{B} / \mathrm{C}$).
77. Pressure can be defined as the amount of force exerted on one square inch of area.

Pounds per square inch (abbreviated PSI) is a measure of (force/pressure).
78. Suppose a fluid has a pressure of 20 PSI .

It is exerting a force of \qquad pounds on every ___ of area it touches.
79. An oil reservoir may have a pressure of 2000 PSI to 15,000 PSI.

Thus, reservoir fluid may exert a force of several tons on every \qquad it touches.
80. It is this \qquad which supplies energy in a flowing well.

Hydrostatic Pressure

81. Suppose you stack one block on top of another block.

The pressure at the bottom (increases/decreases).
82. The taller the block, the (more/less) force it exerts at the bottom.
83. If a block is made out of lighter material, it exerts _ force on one square inch than a heavier block would exert.
84. Water has a higher density than oil.

WATER
A

OIL
B

The pounds per square inch is greater at the bottom of $\operatorname{tank}(\mathrm{A} / \mathrm{B})$.
85. The higher the density of a liquid, the more \qquad it exerts on the bottom of its container.
86. Each of these tanks contains the same volume of water.

A

B

But pressure is greater at the bottom of $\operatorname{tank}(\mathrm{A} / \mathrm{B})$.
87. The height of a liquid is its head.

Liquids with higher heads create (more/less) pressure than liquids with lower heads.
88. The pressure that results from the height and density of a liquid is called hydrostatic pressure.

The head of this liquid is \qquad feet.
89. The hydrostatic pressure of this liquid is \qquad PSI.
90. As head increases, hydrostatic pressure (increases/ decreases).
91. As density increases, hydrostatic pressure (increases/ decreases).
92. Hydrostatic pressure depends on the \qquad of the liquid and on the \qquad of the liquid.
93. Hydrostatic pressure does not depend on the shape of the liquid's container.

Each of these open tanks contains a 10 -foot head of water.

The pounds per square inch at the bottom of each is (the same/different).

Atmospheric Pressure

94. The atmosphere is a "blanket" of gases about 7 miles high which surrounds the earth. This atmosphere exerts 14.7 pounds of (absolute) pressure on each square inch of earth.

Or, like the hydrostatic pressure of a liquid, atmospheric pressure is caused by the \qquad and \qquad of the gases above the earth.
95. Although atmospheric pressure is a form of static pressure, we generally do not think of gases as exerting hydrostatic pressure.

Hydrostatic pressure is ordinarily used to mean only the pressure exerted by the height and density of a
96. Pressure gages do not show atmospheric pressure.

At atmospheric pressures, an oil-field pressure gage reads (14.7/0) PSI.
97. Since barometers and some other instruments do show atmospheric pressure, the pressure shown on a gage is specified by the letters PSIG.

PSIG stands for ___ per square inch
\qquad .
98. A fluid with the pressure 20 PSIG exerts a force of 20 pounds (more/less) than atmospheric pressure on every it touches.

Pressure, Temperature, and Volume
99. Heat is a form of energy.

When you heat a fluid, you are (increasing/decreasing) its energy.
100. When a fluid is heated, its molecules move (faster/ slower).
101. As liquid molecules are heated, the spaces between them get larger.

If enough heat is added, the liquid turns to a
\qquad .
102. If the gas is cooled enough, it turns back to a again.
103. Cooling a fluid is (adding/removing) energy.
104. Removing heat from a fluid (increases/decreases) the motion of its molecules.
105. Temperature is one way of measuring heat.
$70^{\circ} \mathrm{F}$ is a measure of \qquad .
106. Volume is the amount of space something occupies.

Barrels is a measure of \qquad .
107. A barrel of oil is 42 gallons.

When large volumes are being handled, oil is measured in (gallons/barrels).
108. Cubic feet, gallons, and barrels are all measures of
\qquad .
109. Gallons and barrels are (gas/liquid) volume measures.
110. Gas volume is usually measured in \qquad
\qquad .
111. When a gas is compressed, it occupies less space.

Compressing a gas decreases its \qquad .
112. As the gas molecules are squeezed into a smaller space, they exert more force on every square inch they touch.

Compressing a gas increases its \qquad .
113. As the gas molecules are squeezed together, they also move faster and the gas gets hotter.

Gas compressors usually must be cooled to remove some of the \qquad caused by compression.
114. Since liquids are practically incompressible, liquids are usually considered to have fixed volumes.

But at very high pressures, liquids can be \qquad somewhat.
115. Under most conditions, when fluid pressure increases, its temperature also \qquad .
116. Compressing a fluid:
(increases/decreases) its volume;
(increases/decreases) its temperature.
117. In hot weather, the level of oil rises in an open container or vented storage tank.

Heat causes fluids to (expand/contract).
118. As temperatures increase, fluid volume (increases/ decreases), if the fluid is free to expand.
119. The gas in this cylinder is trapped and cannot expand.

HEAT

Heating the gas increases its (volume/pressure).
120. In an open container, increasing the temperature of a fluid increases its volume.

In a closed container, increasing the temperature of a fluid increases its \qquad .
121. The pressure of a fluid in a closed container can be increased by:
(increasing/decreasing) its volume; or by
(increasing/decreasing) its temperature.
122. Suppose this pressurized gas is supporting a movable piston.

When the gas is heated, it (expands/contracts), and the same amount of pressure will raise the piston (higher/ lower).
123. Or, as temperature increases, volume (increases/ decreases), while pressure remains the same.
124. If the heated gas is trapped and cannot expand, (pressure/volume) will increase, while (pressure/volume) remains the same.
125. Heat and pressure are both forms of energy.

The energy of a fluid can be increased by heating the fluid, or by applying \qquad to the fluid.
126. Both heat and compression increase the \qquad of a fluid.
127. Both cooling a fluid and reducing the pressure on a fluid (increase/decrease) its energy.
128. At the very high pressures in oil reservoirs, gas can be compressed into a liquid state.

Gas that is compressed into a liquid state has (more/ less) energy than gas that is turned into a liquid by cooling it.

REVIEW AND SUMMARY

129. Liquids and gases are called \qquad because all liquids and gases can be made to \qquad -.
130. Gases are compressible fluids; liquids are practically
\qquad fluids.
131. Density is a measure of the \qquad of a fluid.
132. PSIG is an abbreviation for \qquad per \qquad ___ gage.
133. PSIG is a measure of fluid \qquad .
134. Hydrostatic pressure is caused by the \qquad and \qquad of a liquid.
135. When a fluid is heated, its pressure \qquad if volume remains the same.
136. Compressing a gas (increases/decreases) its pressure and (increases/decreases) its volume.
137. When pressure is applied to a fluid, temperature (increases/decreases).
