GAS MEASUREMENT

Unit 1-Fundamentals of Gas Measurement

TEMPERATURE AND PRESSURE

1. Anything that moves has kinetic energy.

Since gas molecules move constantly, they (possess/do not possess) kinetic energy.
2. The faster a molecule moves, the (more/less) kinetic energy it has.
3. This drawing shows a gas in a rigid, closed container.

Because they are always moving, the molecules are constantly bumping into other \qquad and into the \qquad of the container.
4. The more molecules there are in the container, the (more/fewer) collisions will occur.
5. Also, the faster the molecules move, the (more/fewer) collisions there will be.
6. The temperature of a gas is determined by the average ___ energy of its molecules.
7. So, an increased temperature in the container can mean that either:
the molecules are moving \qquad ; or,
that more \qquad have been added to those already there.
8. When molecules strike the container walls, they (do/do not) exert force.
9. Suppose the molecules are striking the container walls with a total force of 1000 pounds.
The 1000-pound force is exerted (at one point/over the whole area).
10. Suppose the whole area is 10 square inches.

1000 pounds spread over 10 square inches equals ___ pounds for each square inch.
11. The pressure exerted is 100 per _ or 100 PSI .
12. Pressure is amount of \qquad exerted on a certain \qquad .
13. Pressure can be increased either by (increasing/decreasing) the amount of force or by \qquad the size of the area.
14. The amount of force a molecule can exert depends on how much energy it possesses.
The more energy a molecule has, the (more/less) force it can exert.
15. The faster a molecule moves, the (more/less) energy it has.
16. If two molecules of different weights are moving at the same speed, the (lighter/heavier) molecule has more energy.
17. So, the energy a single molecule has and the amount of force it can exert depend on two things:
how \qquad the molecule is moving; and how much the molecule \qquad
18. The total force that gas molecules can exert on a rigid container also depends on how many \qquad are in the container.
19. In a rigid container of gas, with all the molecules the same weight, an increase in pressure can be caused by: adding more \qquad to the container ; or by making the molecules move \qquad .
20. Both the pressure and temperature of a gas are related to the behavior of the gas molecules.

In a rigid container, when molecules move faster, both pressure and temperature (increase/decrease).
21. Packing more molecules into a rigid container also increases both \qquad and \qquad
22. In a rigid container, an increase in either pressure or temperature (causes/does not cause) an increase in the other.
23. Both pressure and temperature are indicators of the amount of \qquad possessed by gas molecules.

VOLUME

24. Suppose the volume of this rigid container is one cubic foot.

If the container is heated, the gas molecules move
25. As the molecules move faster, both \qquad and
\qquad increase.
26. The container is rigid, so unless the container explodes, gas volume (changes/stays the same).
27. Suppose the volume of this expandable container is one cubic foot.

1 CUBIC FOOT

If the container is heated, the faster moving molecules cause the container to (expand/contract).
28. When the gas expands, its volume and the volume of the container (increase/decrease).
29. When the gas is heated, the total force of the molecules increases, but the number of square inches over which the force is spread also (increases/decreases).
30. Pressure is amount of force per unit of area.

Pressure increases if there is either:

```
more (force/area); or
less (force/area).
```

31. If both force and area increase together at the same rate, pressure (does/does not) increase.
32. In an expandable container, an increase in temperature causes an increase in the \qquad that the gas occupies, but does not increase the \qquad that the gas exerts.
33. This drawing shows a section of a pipeline with the shaded portion representing one cubic foot.

If the temperature increases, the gas expands and the molecules are much farther apart.
When the gas expands, the number of molecules in a one cubic foot space is (greater/smaller).
34. This means that the amount of gas in one cubic foot is (more/less).
35. Suppose the pressure in the pipeline increases.

Under higher pressure, the molecules are closer together and the number of molecules squeezed into a one cubic foot space is (greater/smaller).
36. When pressure increases, the amount of gas squeezed into a one cubic foot space is (more/less).
37. One cubic foot of gas (is/is not) always a fixed amount of gas.
38. The amount of gas in one cubic foot depends on
\qquad and \qquad
39. If you wanted to get the greatest amount of gas in each cubic foot, you would buy cubic feet of gas-
at (high/low) temperature; and
(high /low) pressure.
40. This drawing shows two containers, each holding one cubic foot of a different gas.

The container on the left holds a certain number of small, light-weight molecules, while the container on the right holds the same number of \qquad molecules.
41. The energy possessed by both groups of molecules is related to the \qquad and \qquad in the container.
42. If the pressure and temperature in both containers are the same, then the \qquad possessed by both gases is the same.
43. The molecules are not the same, so if the energy is the same, the light molecules are moving (faster/slower) than the heavy molecules.
44. No matter what the size of the molecules, equal volumes of all gases at the same pressure and temperature have (the same/a different) number of molecules.
45. So that both buyer and seller know exactly how much gas is involved in a transaction, a standard is established.
Standardization means that every cubic foot of gas that meets the standard contains (the same/a different) number of molecules.
46. Amount of gas can be set by using a standard that specifies a certain \qquad of gas at a certain
\qquad and \qquad —.
47. The American Gas Association standard of measurement is one cubic foot at a pressure of 14.73 PSIA (pounds per square inch absolute) and a temperature of 60° Fahrenheit.
Every cubic foot of gas at these conditions contains the
\qquad number of molecules.

GAGE AND ABSOLUTE PRESSURE

48. Pressure is amount of \qquad per unit area.
49. When force is expressed in pounds per square inch, it is called the \qquad the gas exerts.
50. The weight of the atmosphere exerts force, too.

At sea level, it exerts a force of about 15 \qquad on each square inch.
51. The atmosphere is thinner at the top of a mountain than it is at sea level.

As altitude increases, atmospheric pressure (increases/ decreases).
52. The closer the altitude is to sea level, the (higher/lower) atmospheric pressure is likely to be.
53. High-pressure weather conditions are accompanied by an (increase/decrease) in atmospheric pressure.
Low-pressure weather conditions are accompanied by a decrease in \qquad
54. So, atmospheric pressure varies with the weather and with the \qquad above sea level.
55. Normally, the pressure of the atmosphere is about
\qquad PSI.
56. This drawing shows a tank of water open to the atmosphere.

The pressure of the atmosphere on the water is about
\qquad PSI.
57. Suppose the pressure of the water on the bottom of the tank is 20 PSI .
The total, or absolute, pressure at the bottom of the tank is:
the pressure of the \qquad in the tank ; plus,
the pressure of the \qquad on the water.
58. The total, or absolute, pressure at the bottom of the tank is 15 PSI plus 20 PSI , or \qquad PSIA.
59. Most gages are calibrated to measure only the pressure within a system.

Most gages (include/do not include) atmospheric pressure.
60. A pressure reading that does not include atmospheric pressure is called gage pressure.
Gage pressure is expressed as pounds per square inch gage, abbreviated (PSIG/PSIA).
61. Absolute pressure is total pressure including both:
the pressure within the system, or \qquad
pressure ; and
the pressure of the \qquad .
62. Absolute pressure is expressed as pounds per square inch absolute, abbreviated \qquad
63. Gage pressure, PSIG, (includes/does not include) atmospheric pressure.
64. Absolute pressure, PSIA , is \qquad pressure plus \qquad pressure.
65. Since the pressure of the atmosphere affects gas molecules, the standard pressure for gas measurement is usually expressed as pounds per square inch (gage/ absolute).
66. The A.G.A. defines a standard cubic foot as being at 60° Fahrenheit and 14.73 (PSIG/PSIA).

TEMPERATURE MEASUREMENT

67. There is more than one kind of temperature scale.

Most thermometers in the U.S. read in degrees (Fahrenheit/Celsius).
68. Calculations in English units based on temperature are correct only if the Rankine scale is used.

When calculations are required, degrees Fahrenheit (should/should not) be converted to degrees Rankine.
69. Conversion from Fahrenheit to Rankine is made by adding 460 to the Fahrenheit reading.
A reading of $0^{\circ} \mathrm{F}$ is equal to \qquad ${ }^{\circ} \mathrm{R}$.
70. A reading of $40^{\circ} \mathrm{F}$ is equal to \qquad ${ }^{\circ} \mathrm{R}$.
71. The A.G.A. standard temperature is $60^{\circ} \mathrm{F}$.

This standard temperature on the Rankine scale is
\qquad ${ }^{\circ} \mathrm{R}$.
72. The Rankine scale is an absolute scale.

Whenever absolute temperature is called for, a Fahrenheit reading is converted to an absolute reading by adding \qquad
73. A gas at $100^{\circ} \mathrm{F}$ has an absolute temperature of $\longrightarrow{ }^{\circ} \mathrm{R}$.

Review

74. Absolute pressure is total pressure.

Absolute pressure is \qquad pressure plus pressure.
75. Gage pressure is abbreviated \qquad and absolute pressure is abbreviated \qquad
76. Depending on weather conditions and altitude, atmospheric pressure (may vary/is always the same).
77. Since atmospheric pressure can change, absolute pressure (can/cannot) change.
78. Standard pressure is a pressure established for the purpose of standardizing gas measurement.
Once a standard pressure is agreed on, it (does/does not) change.
79. For convenience in calculations, temperature is expressed in degrees absolute.
The Fahrenheit scale (is/is not) an absolute scale.
80. To convert Fahrenheit degrees to absolute degrees, add
\qquad .
81. The absolute scale used with Fahrenheit readings is called the \qquad scale.

BOYLE'S LAW

82. Suppose the volume of this gas is halved and that its temperature stays the same.

A

B

The number of molecules in container A are forced into half the volume in container B. The pressure they exert in B is (half/double) the pressure they exert in A.
83. In B, pressure is (half/double) the pressure in A.
84. In other words, if the temperature stays the same, when volume decreases, pressure \qquad
85. When volume increases, pressure \qquad .
86. This pressure-volume relationship is inverse.

That is, when one changes, the other changes in (the same/an opposite) direction.
87. This pressure-volume relationship, when expressed as a scientific law, is called Boyle's law.
Boyle's law says that at constant temperature, the volume of a gas changes (directly/inversely) with changes in (gravity/absolute pressure).
88. Boyle's law expresses a (pressure-volume/temperaturevolume) relationship.
89. If half a cubic foot of gas at $60^{\circ} \mathrm{F}$ and 30 PSIA is expanded to a volume of one cubic foot at $60^{\circ} \mathrm{F}$ it will have a pressure of \qquad PSIA.
90. Two cubic feet of a gas at $60^{\circ} \mathrm{F}$ and 7.5 PSIA is equal to one cubic foot of the same gas at $60^{\circ} \mathrm{F}$ and \qquad PSIA.
91. At $60^{\circ} \mathrm{F}$, both a half cubic foot at 30 PSIA and two cubic feet at 7.5 PSIA are equal to one cubic foot at \qquad PSIA.
92. Using Boyle's law, quantities of gas at $60^{\circ} \mathrm{F}$, not at standard pressure, (can/cannot) be converted to standard cubic feet.
93. Boyle's law assumes a constant temperature.

If the temperature changes, Boyle's law (holds true/ does not hold true).
94. The temperature specified for a standard cubic foot is $60^{\circ} \mathrm{F}$.

If the temperature is constant, but not $60^{\circ} \mathrm{F}$, Boyle's law alone (can/cannot) convert to standard cubic feet.

CHARLES' LAW

95. Suppose the gas in this expandable container is heated.

The pressure stays the same, but the gas (expands/ contracts).
96. The volume of the gas (increases/decreases).
97. If pressure stays the same, as temperature increases, volume also \qquad .
98. This temperature-volume relationship is direct, rather than inverse.

That is, as temperature changes, volume changes in (the same/an opposite) direction.
99. This temperature-volume relationship expressed as a scientific law is called Charles' law.

Charles' law states that at constant pressure, the volume of a gas changes (directly/inversely) with changes in absolute (temperature/pressure).
100. Charles' law expresses a (pressure-volume/tempera-ture-volume) relationship.
101. The absolute temperature of a standard cubic foot of gas is $520^{\circ} \mathrm{R}$.
At a constant pressure of 15 PSIA, if the temperature of one cubic foot of gas is increased to $1040^{\circ} \mathrm{R}$, the gas expands and becomes \qquad cubic feet.
102. At the same constant pressure, if the temperature of a cubic foot of gas is reduced from $520^{\circ} \mathrm{R}$ to $260^{\circ} \mathrm{R}$, the volume becomes \qquad a cubic foot.
103. At a constant pressure of 15 PSIA, two cubic feet at $1040^{\circ} \mathrm{R}$ and half a cubic foot at $260^{\circ} \mathrm{R}$ are both equal to one cubic foot at \qquad ${ }^{\circ} \mathrm{R}$.
104. Using Charles' law, quantities of gas at standard pressure, but not at standard temperature, (can/cannot) be converted to standard cubic feet.
105. Charles' law assumes a constant pressure.

If the pressure changes, Charles' law (does/does not) hold true.
106. The pressure specified for a standard cubic foot is 14.73 PSIA.

If pressure is constant, but not 14.73 PSIA, Charles' law alone (can/cannot) convert to standard cubic feet.

Review

107. Boyle's law says that at constant temperature, the volume of a gas varies (directly/inversely) with changes in (gravity/absolute pressure).
108. In order to use Boyle's law to convert to standard cubic feet, the temperature must be a constant \qquad ${ }^{\circ} \mathrm{F}$.
109. Charles' law says that at constant pressure the volume of a gas changes (directly /inversely) with changes in absolute (pressure/temperature).
110. In order to convert to standard cubic feet using Charles' law, the pressure must be a constant \qquad PSIA.

THE GENERAL GAS LAW

111. The cubic foot is the most common measure of volume in gas measurement.
In order to know how much gas a cubic foot contains, the \qquad and temperature must be specified.
112. Every cubic foot of gas at the same specified pressure and temperature contains (the same/a different) amount of gas.
113. Once the amount of gas per cubic foot is known, both buyer and seller can agree on a \qquad to be paid for each cubic foot.
114. If a different set of pressure and temperature conditions are specified, the price per cubic foot would be (the same/different).
115. Setting a price per cubic foot of gas is made easier when everyone specifies (the same/different) pressure and temperature conditions.
116. The gas industry standard unit of measure is the A.G.A. (American Gas Association) standard cubic foot which specifies a pressure of \qquad PSIA and a temperature of \qquad ${ }^{\circ} \mathrm{F}$.
117. The pressure and temperature of gas actually being measured in the field is (usually/almost never) at these standard conditions.
118. For the purpose of buying and selling, cubic feet at measured conditions must be converted to cubic feet at
\qquad conditions.
119. If this conversion is not made accurately, (it doesn't matter/someone loses money).
120. If the temperature is standard, the standard volume of gas at non-standard pressure can be found by using (Boyle's/Charles') law.
121. If the pressure is standard, the standard volume of gas at non-standard temperature can be found using \qquad law.
122. By combining both Boyle's and Charles' law, standard volume can be calculated regardless of \qquad and \qquad
123. The general gas law for calculating standard volume is a combination of both \qquad and \qquad laws.
124. With reference to the volume of a gas, this law states that:
gas volume changes in direct ratio to changes in absolute \qquad ; and
gas volume changes in inverse ratio to changes in absolute \qquad .
125. Expressed as a mathematical equation, the general gas law for calculating standard volume is this:

$$
V_{2}=\frac{P_{1} \times V_{1} \times T_{2}}{P_{2} \times T_{1}}
$$

The letters P, V, and T, stand for \qquad and \qquad
126. Using this equation allows starting out with any number of cubic feet, V_{1}, and any measured \qquad and P_{1} and T_{1};
and converting to cubic feet, V_{2}, at (measured/standard) pressure and temperature, P_{2} and T_{2}.
127. The number that solving the equation gives, V_{2}, is the volume in (standard/measured) cubic feet.
128. V_{1} is the number of (standard/measured) cubic feet.
129. The measured pressure and temperature are represented by (P_{1} and T_{1} / P_{2} and T_{2}).
130. Standard pressure and temperature are represented by
\qquad and \qquad
131. The only unknown in the equation is V_{2}, or \qquad volume.
132. Standard temperature, T_{2}, is always
${ }^{\circ} \mathrm{F}$ and A.G.A. standard pressure, P_{2}, is always
\qquad PSIA.
133. Depending on the situation, the measured parts of the equation, V_{1}, P_{1}, and T_{1}, (change/stay the same).
134. Pressure and temperature must be expressed in absolute terms.

Degrees Fahrenheit are converted to degrees absolute by adding \qquad to the Fahrenheit reading.
135. Standard temperature, T_{2}, for use in this equation is always \qquad ${ }^{\circ}$ Rankine.
136. Measured temperature, T_{1}, is degrees Fahrenheit plus
137. Absolute pressure is gage pressure plus \qquad pressure.
138. Assume an atmospheric pressure of 14 PSIA.

A gage pressure of 266 PSIG is an absolute pressure of
\qquad PSIA.
139. Assume an oxygen bottle with an actual measured volume of 2.0 cubic feet, a pressure of 266 PSIG, and a temperature of $40^{\circ} \mathrm{F}$. How many standard cubic feet (SCF) of oxygen does the bottle contain?

$$
\begin{aligned}
& \mathrm{P}_{1}=\text { measured pressure } \\
& \mathrm{T}_{1}=\text { measured temperature } \\
& \mathrm{V}_{1}=\text { measured volume } \\
& \mathrm{P}_{2}=\text { standard pressure }(14.73 \mathrm{PSIA}) \\
& \mathrm{T}_{2}=\text { standard temperature }\left(520^{\circ} \mathrm{R}\right) \\
& \mathrm{V}_{2}=\text { standard volume }
\end{aligned}
$$

If atmospheric pressure is 14.0 PSIA, P_{1} in the equation is \qquad PSIA.
140. V_{1} is \qquad cubic feet.
141. T_{1} is \qquad ${ }^{\circ} \mathrm{R}$.
142. P_{2} is \qquad PSIA (standard).
143. T_{2} is \qquad ${ }^{\circ} \mathrm{R}$ (standard).
144. V_{2} is the number of \qquad cubic feet in the bottle.
145.

$$
V_{2}=\frac{P_{1} \times V_{1} \times T_{2}}{P_{2} \times T_{1}}
$$

$$
V_{2}=\frac{280 \times 2.0 \times 520}{14.73 \times 500}
$$

$$
V_{2}=
$$

\qquad SCF.

Review

146. The cubic foot is the most common measure of volume in gas measurement.
The standard cubic foot represents a certain (volumel quantity) of gas.
147. For the purpose of buying and selling, non-standard cubic feet are converted to \qquad cubic feet.
148. The A.G.A. standard measure is one cubic foot at _ PSIA and \qquad ${ }^{\circ} \mathrm{F}$.
149. The general gas law is a combination of \qquad and \qquad laws.
150. The general gas law says that:
gas volume changes in inverse ratio to changes in absolute \qquad ; and
gas volume changes in direct ratio to changes in absolute \qquad
151. For converting non-standard volumes to standard volumes, the \qquad gas law is used.
152. Written mathematically, the general gas law is this:

$$
V_{2}=\frac{P_{1} \times V_{1} \times T_{2}}{P_{2} \times T_{1}}
$$

P_{1} is the non-standard measured \qquad (in PSIA).
153. V_{1} is the non-standard measured \qquad .
154. T_{1} is the non-standard measured \qquad in ${ }^{\circ} \mathrm{R}$.
155. P_{2} and T_{2} are \qquad pressure and temperature.
156. V_{2} is the number of \qquad
\qquad
157. Degrees Fahrenheit are converted to absolute degrees by (adding/subtracting) 460 to the Fahrenheit reading.
158. Absolute pressure is \qquad pressure plus
\qquad pressure.
159. In order for the general gas law equation to work, all pressure and temperature values must be expressed in
\qquad terms.

SPECIFIC GRAVITY AND DENSITY

160. Density is weight per unit of volume.

A cubic foot of lead weighs more than a cubic foot of water because lead is (more/less) dense than water.
161. This drawing shows the weight of four cubic foot containers of gases at standard temperature and pressure.

ETHANE . 08 LBS.

METHANE . 04 LBS.

The density of air is \qquad pounds per cubic foot.
162. The density of ethane is \qquad pounds per cubic foot.
163. Ethane and air have (about the same/very different) densities.
164. The density of butane is 0.16 pounds per cubic foot.

Butane is approximately (twice/half) as heavy as air.
165. Methane, at 0.04 pounds per cubic foot, is \qquad as heavy as air.
166. The drawing represents .08 pounds of air before and after compression.

Uncompressed, the air occupies a volume of \qquad cubic foot.
167. In B, the same weight of gas occupies \qquad the volume.
168. The density of the air in A is \qquad pounds per cubic foot.
169. In B, . 08 pounds occupies $1 / 2$ foot.

A half cubic foot that weighs .08 pounds has the same density as one cubic foot that weighs (.16/.04) pounds.
170. The air at B is (twice/half) as dense as the air at A.
171. If the volume in A were allowed to expand to 2 cubic feet, the density would then be .08 pounds per 2 cubic feet or \qquad pounds per one cubic foot.
172. The more a gas is compressed, the (higher/lower) its density.
173. Therefore, an increase in pressure causes an increase in
174. If a gas is in a flexible container, increasing the temperature causes the gas to (expand/contract).
175. When a gas expands, there is more space between molecules and the density of the gas is (greater/less)
176. So, if pressure stays the same, an increase in temperature causes (an increase/a decrease) in density.
177. The density of a certain volume of gas depends both on its \qquad and \qquad .
178. Changes in pressure and temperature (cause/do not cause) changes in density.
179. Both wood and oil float on water.

Water is (more/less) dense than wood and oil.
180. A helium-filled balloon floats up through air.

The density of helium is (higher/lower) than the density of air.
181. The specific gravity of a gas is its density in relation to the density of air, both at the same temperature and pressure.

To find the specific gravity of a gas, divide its density by the density of \qquad .
182. If the density of methane is .04 pounds per cubic foot and the density of air is .08 pounds per cubic foot, the specific gravity of methane is $.04 / .08$, or \qquad .
183. The specific gravity of air is 1.000 and the specific gravity of helium is 0.1368 .

Helium is (more/less) dense than air.
184. Any gas with a density less than the density of air floats on air and has a specific gravity (greater/less) than 1.000
185. When a piece of dry ice left on a table evaporates at room temperature, the white carbon dioxide "smoke" flows over the edge of the table and clings to the floor.
Carbon dioxide is (more dense/less dense) than air.
186. The specific gravity of carbon dioxide is 1.53 .

If a gas is more dense than air, its specific gravity is (more lless) than 1.000.

And if the gas is less dense than air, its specific gravity is (more/less) than 1.000 .
187. Ethane has a specific gravity of 1.049 , and is slightly (more/less) dense than air.
188. Ethane (floats/sinks) in air.
189. Methane has a specific gravity of 0.554 , and is (more/ less) dense than air.
190. Methane (floats/sinks) in air.
191. Assume the gas from a certain well contains about 80% methane and 20\% ethane.
Its specific gravity is around 0.65 .
This gas is (more/less) dense than air.
192. The makeup of the gas as it comes from the well affects its specific gravity.
A higher proportion of a gas with a low specific gravity would (raise /lower) the specific gravity of the well gas.
193. A makeup with a higher proportion of a gas with a high specific gravity would (raise/lower) the specific gravity of the well gas.
194. So, the density of a gas depends partly on what mix of gases it contains, or its \qquad .
195. Specific gravity is the density of a gas compared to the density of air at the same \qquad and \qquad
196. Since specific gravity is always the density of a gas divided by the density of air, both at the same pressure and temperature, the specific gravity of a particular gas (is always the same/sometimes changes).

REAL AND IDEAL GASES

197. Real gas molecules are attracted to one another. This attraction between molecules is greater when molecules are (close together/far apart).
198. At very high pressures, gas molecules are relatively (close together/far apart).
199. At high pressures, then, attraction between gas molecules is (increased/decreased).
200. The general gas law is based on a theoretically perfect, or ideal, gas that has no attractions between molecules.
Ideal gases and real gases behave (exactly alike/ differently).
201. Calculations based on the general gas law (only approximate/equal) the behavior of real gases.
202. The greater the attraction between molecules, the more real gas behavior differs from ideal gas behavior.
At high pressures, the deviation from the gas laws is (greater than / less than) the deviation at low pressures.
203. At low pressures, fairly accurate calculations can be made without applying a correction for molecular attraction.
At high pressures, the general gas law (requires/does not require) a correction factor.
204. At low pressures, the general gas law accounts for the compressibility of gas.
At high pressures, the compressibility of gas changes because of the \qquad between molecules.
205. This change in the behavior of gas at high pressures is called compressibility.
The factor that corrects the general gas law for high pressures is called the \qquad factor.
206. In equations, the compressibility factor is represented by the letter Z.
The compressibility factor is also referred to as the
\qquad factor.

When equations are written the letter Z might be confused with the number 2.
For this reason, in mathematics, the letter Z is always written with a line through it, like this- Z.
207. The general gas law written to include the Z factor is this:

$$
V_{2}=\frac{P_{1} V_{1} T_{2} Z_{2}}{P_{2} T_{1} Z_{1}}
$$

The Z factor corrects the general gas law for the compressibility of gas at high \qquad .
208. For convenience in making accurate field calculations, the Z factor can (be ignored/be found in published tables).

REVIEW AND SUMMARY

209. Absolute pressure is ___ pressure.
210. Atmospheric pressure is usually about 15 PSIA, but can change with changes in local \qquad conditions.
211. Atmospheric pressure is also affected by the \qquad above or below sea level.
212. Standard pressure, as specified by the A.G.A., is _ PSIA.
213. A standard pressure, once decided on, (can fluctuate) is always the same).
214. Absolute temperature, ${ }^{\circ} \mathrm{R}$, is the Fahrenheit reading plus \qquad
215. Standard temperature, as specified by the A.G.A., is
\qquad ${ }^{\circ} \mathrm{F}$, or \qquad ${ }^{\circ} \mathrm{R}$.
216. In regard to volume, the general gas law states that:
gas volume changes in inverse ratio to changes in absolute \qquad ; and
gas volume changes in direct ratio to changes in absolute \qquad .
217. Equal volumes of any gas at the same pressure and temperature contain (the same/a different) number of molecules.
218. A cubic foot of gas can contain any amount of gas depending on \qquad and \qquad
219. To determine the amount of gas in a cubic foot at measured pressure and temperature, a conversion is made to cubic feet at (measured/standard) pressure and temperature.
220. To account for the change in the compressibility of gas at high pressures, the general gas law is corrected by the \qquad factor.
221. The general gas law is a combination of \qquad law and \qquad law.

THE END

