HOW DO I CALCULATE THE VOLUME OF MY CONTAINMENT DIKE?

SITUATION 1:

One tank in the diked area

*Note that the length, width and height of the dike must be measured on the inside, not the outside of the dike.

1) Measure the length of the dike wall
(in feet) $=$ " a " in the formula
2) Measure the width of the dike wall
3) Measure the height of the dike wall
\qquad
(in feet) $=$ "b" in the formula (in feet) $=$ " c " in the formula

Step 1: Multiply the size of your tank (in gallons) by the number indicated to calculate the minimum amount that your dike is required to hold in gallons:
(size in gallons) \qquad x $1.1=$ \qquad
Step 2: Multiply "a" times "b" times "c" to determine the volume of the dike in cubic feet:
(a) x (b) x (c) $=$ \qquad cubic feet

Step 3: Divide the answer from step 2 by the conversion factor below to convert the size of the dike in cubic feet to gallons:
(answer from step 2) | 0.1337 = \qquad gallons

$$
15.61458=\ldots \text { barrels (oil) }
$$

Step 4: \quad Compare the answers in Step 1 and Step 3 to determine if the dike will hold 110% of the volume of the tank. The answer in Step 3 must be equal to or greater than the answer in Step 1.

SITUATION 2:

More than one tank within the diked area

*Note that the length, width and height of the dike must be measured on the inside, not the outside of the dike.

1) Measure the length of the dike wall
2) Measure the width of the dike wall
3) Measure the height of the dike wall

(in feet) $=$ "a" in the formula
(in feet) $=$ "b" in the formula (in feet) $=$ " c " in the formula

Step 1: Multiply the size of your largest tank (in gallons) by the number indicated to obtain the minimum amount that your dike is required to hold in gallons: (Please note that if you have 2 or more tanks siphoned together, you must use the total gallons of all tanks siphoned together.)
x $1.1=$ \qquad
Step 2: Multiply "a" times "b" times "c" to determine the containment volume of the dike in cubic feet:
(a)
x (b)
x (c)
$=(\mathrm{f})$ \qquad cubic feet

Step 3: Determine the displacement of other tanks within the diked area by multiplying the height of the dike wall " c " $x(1 / 2 \text { the diameter of each additional tank within the dike })^{2} \times 3.14$. This calculation must be repeated for each additional tank within the diked area.
(c)
(c) x \qquad x \qquad $=$ \qquad (c) \qquad x \qquad x $\quad 3.14$ \qquad (c) x \qquad x $\quad 3.14$

$$
\text { Total }=(h)
$$

\qquad

Step 4: \quad Subtract the results from step 3 from the results in step 2 to determine the total available volume of the diked area in cubic feet.
\qquad - (h)
$=(\mathrm{i})$
(Step 2) (Sum of Step 3)

Step 5: Divide the answer from step 4 by the conversion factor below to convert the size of the dike in cubic feet to gallons:

Step 6: Compare the answers in Step 1 and Step 5 to determine if the dike will hold 110% of the volume of the tank. The answer in Step 5 must be equal to or greater than the answer in Step 1.

