Overview of Liquid Penetrant Testing (PT):

- What is PT?
- How is PT Performed?
- PT Processes
- Advantages/Disadvantages
- Safety Precautions
- Certification Requirements

Definition:

An NDT method that is used to reveal surface breaking flaws through bleed out of a colored or fluorescent dye from the flaw.

- One of the oldest and most widely used NDT methods
- Can be used on metals and nonmetals, including glass, rubber, plastics, ceramics, etc.

PT provides a means of:

- Obtaining a visual image of a discontinuity on the surface of the specimen under examination
- Disclosing the nature of the discontinuity without impairing the material (presence of cracks, porosity, etc.)
- Separating acceptable and unacceptable parts in accordance with predetermined standards (the standards are included as "acceptance criteria" within a test procedure)

Types of Indications

- False indications due to inadequate removal of penetrant during rinse process or contamination from work area or hands – MUST RETEST
- Nonrelevant indications caused by actual surface discontinuities that are present by design (raised lettering to identify part, etc.)
- Relevant indications true, unintended, discontinuities that must be interpreted and evaluated

How Does PT Work?

- Based upon *capillarity* or *capillary action*
 - The tendency of liquids to penetrate or migrate into small openings, such as cracks, pits, or fissures
- Capillarity depends on forces of cohesion, adhesion, surface tension, and viscosity
 - Cohesion holds like molecules together
 - permits water to rise in a straw
 - Adhesion causes two different substances to join
 - permits water to spread out over glass

More Definitions

- Surface tension enables a liquid surface to behave like a thin elastic membrane
 - why small bugs can stand on water
 - why water droplets are spherical
- Viscosity resistance of a substance to flow
 - honey is very viscous, alcohol is not
- Liquid penetrants tend to have low surface tension (do not bead up) and high capillarity

History of PT

- Used on glazed pottery to check for cracks
- Railroad industry
 - "oil and whiting" method
 - Later largely replaced by magnetic particle inspection
- Magnaflux in Chicago and Switzer in Cleveland performed early research in PT
 - Magnaflux introduced Zyglo in 1942 first use of fluorescent dyes

Steps for Performing a PT

- 1) Surface Preparation
 - Surface must be free of paint, oil, grease, water, or other contaminants
 - May require etching
- 2) Penetrant Application
 - Can be done by spraying, brushing, or immersion in a penetrant bath (dip)
 - Penetrant must be allowed to "dwell" for a minimum time period
 - Dwell time gives penetrant time to be drawn into a discontinuity
 - Time specified by penetrant manufacturer or procedure

Steps for Performing a PT Continued

- 3) Excess Penetrant Removal
 - Penetrant to be removed from the surface of the part without removing penetrant from discontinuities
- 4) Developer Application
 - Developer acts as a blotter to draw the penetrant back to the surface of the part so it can be seen
 - Either a dry powder, dip, or spray
 - Also given time to process (usually a minimum of 10 minutes)

Steps for Performing a PT Continued

- 5) Inspection
 - Part is visually inspected under appropriate lighting to detect indications of flaws
- 6) Final Surface Cleaning
 - Required to remove developer and penetrant from the part

Categorization of PT Processes

- Categorized by type of dye they contain
 - Type 1 fluorescent
 - Type 2 visible
 - Can also be dual sensitivity
- Classified by method for removal of excess penetrant
 - Method A water-washable
 - Method B post-emulsified, lipophilic ("likes oil")
 - Method C solvent-removable
 - Method D post-emulsified, hydrophilic ("likes water")

Categorization of PT Processes Continued

- Finally classified on sensitivity of the penetrant
 - Level ½ Ultra Low
 - Level 1 Low
 - Level 2 Medium
 - Level 3 High
 - Level 4 Ultra High

Sensitivity – the smallest defect that can be detected with a high degree of reliability

Process Selection

- Depends on sensitivity required (how small are the suspected cracks?)
- Number of articles to be tested (can products be dipped?)
- Surface condition of the part (rough or smooth)
- Configuration of test specimen (overhead?)
- Specific test conditions (availability of water, compressed air, etc.)

Equipment/Materials

- Pre-Cleaning/Post-Cleaning
 - Pre-cleaning needed for effective PT (part must be dry)
 - Post-cleaning needed to avoid detrimental effect on part when placed in service
 - Rust, scale, or paint may need to be removed, or etching performed
 - Avoid using wire brushes or metal scrapers they may cover up discontinuities by smearing metal, thus requiring need for etching
- Stationary vs. Portable Test Equipment
- Black Light Uses filter that passes only certain wavelengths of light that activate the fluorescent material (and block harmful UV radiation)

Advantages of PT as an NDT Method

- High sensitivity to small surface discontinuities
- Few material limitations
- Large areas and large volumes of parts can be inspected rapidly and at low cost
- Can inspect parts with complex geometric shapes
- Indications produced directly on surface of part for visual representation of flaw
- Portable method
- Relatively inexpensive

Disadvantages of PT as an NDT Method

- Can only detect discontinuities that are open to the surface
- Can only inspect parts with <u>nonporous</u> surfaces
- Must pre-clean/post-clean parts
- Inspector must have direct access to the part surface
- Time-consuming

Benefits of PT Over VT

- Defects are easier to see because flaw indication much larger than flaw itself
 - Threshold of human visual acuity is ~0.00349" from a distance of 12" (for a person with 20/20 vision)
- Produces a flaw indication with a high contrast
 - High contrast means the flaws are more readily visible against the background due to colored or fluorescent dye

Lighting Requirements

- Visible penetrant
 - Can use natural or artificial light (white light if possible)
 - 100 foot candles at surface of part
- Fluorescent penetrant
 - Usually specifies a UV light intensity of 1000 $\mu W/cm2$ at 15" from filter face
 - White light must be less than 2 fc at surface

Probability of Detection

Abbreviated P.O.D.

- Curves available that indicate POD for specific test methods vs. size of discontinuity (such as crack length)
- PT better at detecting:
 - Small round defects than small linear defects
 - Deeper flaws than shallow flaws

Safety Precautions

- Flammability
 - Use exhaust fans to disperse vapors
 - Ignition sources must be avoided
- Skin Irritation
 - Wear gloves to protect hands
 - Wear safety glasses to protect eyes from splashing
- UV Light
 - Lamps get hot be cautious!
 - Report missing or cracked filter on lamps
 - UV rays can cause sunburn and eye damage if filters not used or not functional

Certification Requirements

• Per ASNT Recommended Practice No. SNT-TC-1A, 2011 edition:

Certification Level	High School Graduate or Equivalent (hrs)	Two Years of Engineering or Technical School (hrs)	OJT (hours)
I	4	4	70
II	8	4	140
Totals:	12	8	210