

Last updated 8/6/2015

Database Normalization
Normalization is the process of organizing data in a database. This includes creating tables and

establishing relationships between those tables according to rules designed both to protect the data

and to make the database more consistent by eliminating redundancy and inconsistent

dependency.

Redundant data wastes disk space and creates maintenance issues. If data that exists in more than

one place must be changed, the data must be changed in exactly the same way in all locations. A

student address change is much easier to implement if that data is stored only in the Student table

and nowhere else in the database.

There are a few rules for database normalization. Each rule is called a "normal form." If the first rule

is observed, the database is said to be in "first normal form." If the first three rules are observed, the

database is considered to be in "third normal form." Although other levels of normalization are

possible, third normal form is considered the highest level necessary for most applications.

First Normal Form
• Eliminate repeating groups in individual tables.

• Create a separate table for each set of related data.

• Identify each set of related data with a primary key.

Do not use multiple fields in a single table to store similar data. For example, to record for a class

that may have two possible books, an inventory record might contain fields for ISBN1 and ISBN2.

What happens when you add a third book? Adding a field is not the answer; it requires table

modifications and does not smoothly accommodate a dynamic number of books. Instead, place all

book information in a separate table called Books, then link classes to books with a book number

key as an individual row.

Second Normal Form
• Create separate tables for sets of values that apply to multiple records.

• Relate these tables with a foreign key.

Records should not depend on anything other than a table's primary key (a compound key, if

necessary). For example, consider a student’s address in a registration system. The Student table

has the address, but other tables such as Billing, Registration, and Grades also require the address.

Instead of storing the student’s address as a separate entry in each of these tables, store it in one

place, either in the Student table or in a separate Address table.

Last updated 8/6/2015

Third Normal Form
• Eliminate fields that do not depend on the key.

Values in a record that are not part of that record's key do not belong in the table. In general, any

time the contents of a group of fields may apply to more than a single record in the table, consider

placing those fields in a separate table.

Think of items such as a Zip Code in all the street addresses. In theory, normalization is worth

pursing. However, many small tables may degrade performance or exceed open file and memory

capacities. It may be more feasible to apply third normal form only to data that changes frequently.

Normalizing an Example Table
These steps demonstrate the process of normalizing a fictitious student table.

1. Unnormalized table:

StudentID Advisor Office Class1 Class2 Class3

a1001 Miller 4242 12345 67890 54321

b2002 Martinez 4241 44556 22339 77665

2. First Normal Form: No Repeating Groups

Tables should have only two dimensions. Since one student has several classes, these classes should

be listed in a separate table. Fields Class1, Class2, and Class3 in the above records are indications of

design trouble.

Spreadsheets often use the third dimension, but tables should not. Another way to look at this

problem is with a one-to-many relationship, do not put the one side and the many side in the same

table. Instead, create another table in first normal form by eliminating the repeating group (Class#),

as shown below:

StudentID Advisor Office Synonym

a1001 Miller 4242 12345

a1001 Miller 4242 67890

a1001 Miller 4242 54321

Last updated 8/6/2015

StudentID Advisor Office Synonym

b2002 Martinez 4241 44556

b2002 Martinez 4241 22339

b2002 Martinez 4241 77665

3. Second Normal Form: Eliminate Redundant Data

Note the multiple Synonym values for each StudentID value in the above table. Synonym is not

functionally dependent on StudentID (primary key), so this relationship is not in second normal

form.

The following two tables demonstrate second normal form:

Students:

StudentID Advisor Office

a1001 Miller 4242

b2002 Martinez 4241

Registration:

StudentID Synonym

a1001 12345

a1001 67890

a1001 54321

b2002 44556

b2002 22339

b2002 77665

Last updated 8/6/2015

4. Third Normal Form: Eliminate Data Not Dependent On Key

In the last example, Office (the advisor’s office number) is functionally dependent on the

Advisor attribute. The solution is to move that attribute from the Students table to the Faculty

table, as shown below. This is one of many possible solutions which are dependent on the

performance and usability of the data in the database.

Students:

StudentID Teacher

a1001 Miller

b2002 Martinez

Faculty:

Name Room Department

Miller 4242 Computer Science

Martinez 4241 Computer Science

Registration:

StudentID Synonym

a1001 12345

a1001 67890

a1001 54321

b2002 44556

b2002 22339

b2002 77665

Last updated 8/6/2015

