## Materials:

- Test work paper
- Calculator
- Calipers
- PVC pipes
- Challenge problem 1
- Warmup 4
- Unit conversion practice
- Area practice problems (optional)


## Course Objectives:

- Solve real-world applications invo
- Simplify basic exponential expressic


## $15 \min$ Warmup 4

a. While students are doing Warmup effort (front and back) if assigned for HW
b. Find the area of the entire surface arch leaves the cross-section that you need
c. Use this same process for CP 1 late

15 min Homework Review (optional-lfass wise, go over any requested problems)
a. Ask 7 students to write answers :
a. Either put every problem
on board
b. Discuss answers and "unit fecto
c. When would using unit factor instead you? To solve multistep conversions

20 min Multistep Unit Conversions Notes
d. Board examples:

1. EX 1: Convert 15 miles to incite
$15 \mathrm{mi} \times \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=950,400 \mathrm{in}$
2. Ex 2: Convert 6 feet to cent mere
$6 \mathrm{ft} \times \frac{12 \text { ix }}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{im}}=182.88 \mathrm{~cm}$
3. EX 3: Convert 60 mph to $\mathrm{in} / \mathrm{m} /$
$\times \frac{5280 \mathrm{ft}}{1 \mathrm{mt}} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \times \frac{1 \mathrm{hr}}{\mathrm{m}}=63.360 \mathrm{in} / \mathrm{mmin}$

4. Ex 5: Convert $1.2 \times 10^{4}$ into
5. Make more examples as ing
$10^{4} \mathrm{~g} \times \frac{10^{6} \mu \mathrm{~g}}{10}=1.2 \times 10^{10} \mu \mathrm{~g}$
e. *On Side of board, write: --Writs
s during the above
examples
Conversion Factors to Know:

25 min Unit Conversion Practice
a. Unit Conversion Practice
assignments> Unit 1
b. Students should write c
i. May choose to
them before marking
c. May work with groups

15 min Caliper and PVC pipe activity
a. Each group should cole
b. How accurately can $\equiv$;z
much more accurate
c. Show how to zero 0
d. Measure O.D. I.D, a."
e. Can ask for a few same
-s an idea if they are
measuring correctly
f. Complete the form eats and Assignments
on Learn (optional
i. Results are se

25 min Challenge Problem 1 -Area of a
a. Work with patiners/groups
b. Students have the tools
(not calculating the ares
c. When class needs help

Warmup 4
 square yards $\Longrightarrow$ AREA

1. Your task interior of
$\qquad$ 30 yob.

2. You are planning construction directly in the center crate calculate the area of sodnea

$$
\begin{aligned}
A & =\pi r^{2} \quad \text { show how te } \\
& =\pi(30)^{2} \text { type in } \pi \text { call } \\
& \approx 2827.43 \mathrm{yd}^{d}
\end{aligned}
$$ tui of 10 yds . Now

Hint: Will need answer fort


$$
\begin{aligned}
A & =\pi r^{2}-\pi r^{2} \\
& =\pi(30)^{2}-\pi(10)^{2} \quad \text { Car }{ }^{\text {Type in } 1 \text { sup }} \\
A & \approx 2,513.27 \mathrm{yd}^{2}
\end{aligned}
$$ e stage.



Take area of entire circle. Subtract the area you doit want in answer. leaves what you do wont.

Unit Conversion Practice Convert:

$$
\begin{aligned}
& \text { 1. } 1.6 \mathrm{~m} \text { into } \mathrm{mm} \\
& 1.6 \mathrm{~m} \times \frac{1000 \mathrm{~mm}}{1 \mathrm{~m}}=1.600 \mathrm{~mm}
\end{aligned}
$$

2. 36 g into kg

$$
36 \mathrm{~g} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=.036 \mathrm{~kg}
$$

3. 8000 meters into ft .

$$
8000 \mathrm{sm} \times \frac{100 \mathrm{gm}}{1 \mathrm{sk}} \times \frac{1 \mathrm{ix}}{2.54 \mathrm{~cm}} \times \frac{1 \mathrm{ft}}{12 \mathrm{ig}}=26.246 .72 \mathrm{ft}
$$

4. 86 inches into meters

$$
\begin{aligned}
& 86 \text { in } \times \frac{2.54 \mathrm{~cm}}{1 \text { iq }} \times \frac{1 \mathrm{~m}}{100 \mathrm{cos}}=2.1844 \mathrm{~m} \approx 2.18 \mathrm{~m} \\
& \text { 5. } 9.3 \times 10^{-5} \mathrm{~g} \text { into } \mu \mathrm{g} \\
& 9.3 \times 10^{-5} \mathrm{~g} \times \frac{10^{6} \mu \mathrm{~g}}{1 \mathrm{~g}}=9.3 \times 10^{1} \mu \mathrm{gg}=93 \mu \mathrm{~g} \\
& \text { 6. } 30 \mathrm{ft} / \mathrm{sec} \text { into } \mathrm{mph} \\
& \frac{30 \mathrm{ft}}{\mathrm{sec}} \times \frac{1 \mathrm{mi}}{5250 \mathrm{ft}} \times \frac{60 \mathrm{set}}{1 \mathrm{miz}} \times \frac{60 \mathrm{mt}}{1 \mathrm{hr}} \approx 20.45 \mathrm{mph} \\
& \text { 7. } 1.54 \times 10^{-10} \mathrm{~m} \text { into } \mathrm{mm} \text {. Write answer in scientific notation. } \\
& 1.54 \times 10^{-10} \mathrm{~m} \times \frac{10^{3} \mathrm{~mm}}{1 \mathrm{x}}=1.54 \times 10^{-7} \mathrm{~mm}
\end{aligned}
$$

8. Acceleration due to gravity is $g=-9.81 \mathrm{~m} / \mathrm{s}^{2}$. Convert gravitational acceleration to $\mathrm{ft} / \mathrm{s}^{2}$

$$
\begin{aligned}
-9.81 \mathrm{gh} \\
\mathrm{~s}^{2}
\end{aligned} \frac{100 \mathrm{~cm}}{1 \mathrm{sp}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{csh}} \times \frac{1 \mathrm{ft}}{12 \mathrm{ig}}=-32.185 \mathrm{ft} / \mathrm{s}^{2}
$$

