EICC COURSE DEVELOPMENT MODEL (CDM)

CATALOG COURSE NUMBER: WEL-416 COURSE TITLE: Advanced Gas Metal Arc Welding (GMAW)						
Originating College: DCCC DMCC SCC			•	Éffective Term/Year: Fall 2015		
Initiating Faculty Member: Bruce Baldwin				Initiating Department Coordinator: Ben Kettering		
Reason for submission: Check all that apply						
New Course If yes, type of course:						
□A&S						
To be considered for General Education? Yes No Category: 						
To be part of an A & S Concentration? Yes No Concentration:						
■CTE Program Title: Gas Metal Arc Welding-Adv ■Required ■Elective						
□General Education or Program Review □Reactivation of an inactive course □Making course inactive						
□Changing course; please explain: □Other; please explain:						
	1.					
Contact Hours/Distribution of Contact Hours						
Lecture Hours		Lab Hours		Clinical Hours	Coop Hours	
Hours per Week:	1.00	Hours per Week:	2.00	Hours per Week:	Hours per Week:	
Number of Weeks:	16.50	Number of Weeks:	16.50	Number of Weeks:	16.50 Number of Weeks:	16.50
**Note: If offering a course for the full fall or spring semester, the number of weeks is 16.5						
Total Lecture Hrs:	19.80	Total Lab Hrs:	39.60	Total Clinical Hrs:	Total Coop Hrs:	
Semester Hours Credit: 2.00 if variable credit, give range:						

Allow repeat^{*} for credit: □Yes **I**No

If yes, total course repeats allowed: If yes, total credits:

*Note that repeat for credit means a student can pass the course and then repeat it for additional credit. An internship course is an example of a course that could be set up as repeatable for additional credit

Course or courses this CDM replaces, if any: WEL-217 Gas Metal Arc Welding Advanced I

CATALOG COURSE DESCRIPTION: This course will build advanced skills in Gas Metal Arc Welding. Topics such as spray arc, short-circuit, and pulse welding, process variation, out of position welding, principle of operation, shielding gases, filler metals, and base metals will be covered. Safety and practical application of these welding processes will be stressed.

RECOMMENDED ENTRY LEVEL SKILLS/KNOWLEDGE:

PRE-REQUISITE COURSES

CCN#	COURSE TITLE				
WEL 256	Gas Metal Arc Welding Basic				
CO-REQUISITE COURSES					
CCN#	COURSE TITLE				

PUBLISHED MATERIAL(S) USED FOR CDM DEVELOPMENT: Hobart Institute of Welding Technology. Gas Metal Arc Welding Advanced EW369 GMAWA. Troy, OH: Hobart Institute of Welding Technology, 2010. Print.

In general it is expected that source material will be dated within 5 years of this CDM date. If all materials/ textbooks cited above are older than this, please explain:

GENERAL COURSE GOALS

Upon successful completion of this course the student should be able to:

Demonstrate knowledge of advanced GMAW processes, principles, and safe working habits.

TOPICAL OUTLINE

- 1. GMAW Advanced Course Overview
- 2. Introduction To GMAW
- 3. Safety and Health of Welders
- 4. Equipment Set-up, Operation and Shutdown
- 5. Single V-Groove Weld, Butt Joint
- 6. Pulsed Spray Transfer
- 7. Single V-Groove Weld, Butt Joint, Pulsed Spray Transfer
- 8. Single V-Groove Weld, Butt Joint Destructive Test
- 9. Weldability of Aluminum
- 10. Fillet Weld, Lap and T-Joint, Horizontal
- 11. Fillet Weld, Lap and T-Joint, Vertical
- 12. Single V-Groove Weld, Butt Joint, Vertical
- 13. Single V-Groove Weld, Macro Etch Test
- 14. Single V-Groove Weld, Butt Joint, Overhead
- 15. Fillet Weld, Lap and T-Joint, Horizontal

COURSE OBJECTIVES

Upon successful completion of the course, a student should be able to:

1. Gas Metal Arc Welding Advanced Course Overview

- a. Describe the GMAW process.
- b. Create quality welds.
- c. Develop safe work practices.
- 2. Introduction to Gas Metal Arc Welding
 - a. Explain wire feed speed.
 - b. Describe the types of metal transfer.
- c. Compare the advantages and dis-advantages of GMAW welding.
- 3. Safety and Health of Welders
 - a. Select proper personal protective equipment.
 - b. Explain what a material safety data sheet is.
 - c. Identify metals that can produce gasses.
- 4. Equipment Set-up, Operation and Shutdown
 - a. Perform visual inspections on machine and cables.
 - b. Install correct wire and wire tension.
 - c. Identify gun cable assembly components.
 - d. Discuss proper machine settings.
 - e. State machine and gas shut down procedures.
- 5. Single V-Groove Weld, Butt Joint
 - a. Assemble a single v-groove butt joint.
 - b. Produce a quality v-groove weld using the flat welding position.
- 6. Pulsed Spray Transfer
 - a. Define correct wire stick out.
 - b. Explain background current.
- c. Explain pulse width.
- 7. Single V-Groove Weld, Butt Joint, Pulsed Spray Transfer
- a. Assemble a single v-groove butt joint.

b. Produce a quality single v-groove weld using the pulsed spray transfer mode employing the horizontal welding position.

- 8. Single V-Groove Weld, Butt Joint Destructive Test
- a. Produce a quality single v-groove weld.
- b. Perform a visual inspection.
- c. Perform a guided bend test.
- 9. Weldability of Aluminum
- a. Explain thermal conductivity.

- b. Explain thermal expansion.
- c. Define the aluminum classification system.
- 10. Fillet Weld, Lap and T-Joint, Horizontal
- a. Assemble a lap and t-joint.
- b. Produce quality lap and t-joint welds on aluminum using the horizontal welding position.
- 11. Fillet Weld, Lap and T-Joint, Vertical
- a. Assemble a lap and t-joint using aluminum.
- b. Produce quality welds in the lap and t-joint configuration using the vertical up welding position.
- 12. Single V-Groove Weld, Vertical
- a. Construct a butt joint with backing using aluminum.
- b. Produce a quality single v-groove weld using the vertical up welding position.
- 13. Single V-groove Weld, Macro Etch Test
- a. Produce a quality multi-pass single v-groove weld.
- b. Perform a visual inspection.
- c. Perform a macro etch test.
- 14. Single V-Groove Weld, Butt Joint, Overhead
 - a. Assemble a single v-groove butt joint with backing.
 - b. Produce a quality weld using the overhead welding position.
- 15. Fillet Weld, Lap and T-Joint, Horizontal
 - a. Assemble lap and t-joints using aluminum.
 - b. Produce a quality weld using the horizontal welding position.

RECOMMENDED METHODS OF INSTRUCTION: Check all appropriate methods of instruction to facilitate student learning of course objectives.

□Case Studies	Class Discussions
Computer lab work	Computer-assisted tools
Computer-assisted writing	Conducting experiments
Demonstration or modeling	Electronic interaction
□Field observation	□Field trips
□Guest speaker	Guided practice
In-class writing or editing workshops	□Journals
□Lecture	Library instruction and resources
■Model building	Peer review
□Readings	□Role play
□Service learning	Simulation
Student and instructor conferences	Student collaborative learning
Student presentation	Student projects
Tests or quizzes	□Worksheets/surveys
Writing assignments/exercises (graded or not)	
□Other (please list specifics):	

RECOMMENDED EVALUATION METHODS: Check all appropriate methods of evaluation to assess student achievement of course objectives.

□Class workshops	Classroom discussions/participation
Collaborative work	Demonstration of skill(s)
Individual conferences	⊐Journals
Laboratory reports	□Oral presentations
□Portfolios	□Pretest/Posttest
■Quizzes	Reading responses
Student presentations	Student projects
☑Tests	□Writing Assignments

Dther (please list specifics):

ATTENDANCE: Policies on attendance will be formulated by the instructor and communicated to the students on the course syllabus.

Date:

ACADEMIC DISHONESTY: Policies on academic dishonesty can be found in the EICC student code of conduct published in the student handbook.

CDM CREATION/REVIEW/REVISION INFORMATION

Originally Written by:

Department Chair, Comments, & Date:

Does similar curriculum exist at other EICC Colleges?

CCC

MCC

SCC
No

If yes, Counterparts Consulted, College, Comments & Date:

CDM Review or Revision Date:

Faculty member(s) & College:

Changes made to course which will require further review steps:

Making course inactive
Credit hours
Contact hours
Course Description

□ 25% or more of course objectives □ Other minor revisions or no revisions

Dean Review, Comments & Date:

If changes made require further review and approval:

College Curriculum Committee Sign-off & Date:

IC Review Subcommittee Sign-off & Date:

Instructional Council Approval: