Chapter 16 Test: Lightning and Surge Protection

Instructor: Drew Lindsey	Name:
Class: ELT 211	Date:

Carefully read each question, and circle the letter next to the correct answer.

- 1. Large voltages that develop suddenly on electric transmission and distribution circuits are referred to as what?
 - a. Harmonics
 - b. Resonance
 - c. Capacitance
 - d. Surges
- 2. What is the purpose of a shield wire, or static wire?
 - a. To protect the phases from lightning strokes
 - b. To better support poles
 - c. To give raptors a place to perch
 - d. All of the above
- 3. A static wire must be connected to what?
 - a. Pole grounds
 - b. Each steel tower or structure
 - c. A common neutral is available
 - d. All of the above

- 4. A lightning or surge arrestor is designed to prevent what condition?
 - a. Over voltage
 - b. Over current
 - c. Inductive reactance
 - d. Aeolian vibration
- 5. What voltages are secondary arrestors rated for?
 - a. 7200/12470y
 - b. 175V and 650V
 - c. 3KV through 120KV
 - d. 3KV and above
- 6. Where are station arrestors typically used?
 - a. On distribution lines
 - b. On transmission lines
 - c. On low voltage secondaries.
 - d. In substations and generating stations on major equipment
- 7. Other than lightning, how are surge voltages generated?
 - a. Wind
 - b. By operating switches and other equipment connected to the transmission system
 - c. Proximity to traffic
 - d. None of the above
- 8. What type of arrestor is now the industry standard?
 - a. The silicon carbide valve type
 - b. The metal oxide varistor type

- 9. A lightning or surge arrestor operates like a safety valve on a steam boiler.
 - a. True
 - b. False
- 10. What are arrestors that are used on underground systems referred to as?
 - a. Intermediate arrestors
 - b. Distribution arrestors
 - c. Elbow arrestors
 - d. Load break elbows
- 11. Which of these factors do NOT contribute to the selection of the appropriate arrestor for a given application?
 - a. Maximum phase to ground voltage
 - b. Maximum discharge voltage of the arrestor
 - c. Basic insulation level (BIL) of the equipment to be protected
 - d. Physical size of the arrestor
- 12. The arrestor is installed such that when the system is operating at the designed voltage the arrestor is nonconducting.
 - a. True
 - b. False
- 13. When an over voltage is induced the arrestor how?
 - a. It diverts it to ground
 - b. It absorbs the over voltage
 - c. It diverts it to consumer equipment
 - d. It shorts the line until protective devices open the circuit

- 14. Lightning arrestors will never fail.
 - a. True
 - b. False
- 15. How does a static wire work?
 - a. By acting as a shield to divert lightning away from the line
 - b. By emitting signals that repel lightning
 - c. By basically bringing the grounds potential above the conductors
 - d. By making the line less attractive to lightning
- 16. What are Surges also referred to as?
 - a. Resonance
 - b. Trace voltages
 - c. Farads
 - d. Transients
- 17. Surges are caused by what?
 - a. Direct lightning strikes
 - b. Nearby lightning strikes to the ground
 - c. Switching
 - d. All of the above
- 18. Arrestors are installed at transition points from overhead to underground and vice versa.
 - a. True
 - b. False

19. How many classes of silicon carbide valve type surge arrestors are there?

- a. 2
- b. 4
- c. 6
- d. 10
- 20. Which type of resistor provides the highest level of protection, and is used on major pieces of equipment?
 - a. Secondary arrestors
 - b. Distribution arrestors
 - c. Intermediate arrestors
 - d. Station arrestors