ELT 101: Basic Electricity: AC/DC

LAB 9-1: Series-parallel circuits

Objectives

1) Given an electrical trainer, build a functioning series-parallel circuit.
2) Calculate all circuit values of the series-parallel circuit to include E, I, R and P.
3) Measure circuit values to verify calculations are correct.

Equipment and materials

1) Safety glasses
2) Fluke 179 DMM
3) Electrical trainer
4) Jumper leads

Procedure 1: Build a series circuit

1) Using the components listed below and your jumper leads, build the circuit shown above on your trainer:

$$
\mathrm{R} 1=33 \text { ohms } \quad \mathrm{R} 2=47 \text { ohms } \quad \mathrm{R} 3=220 \text { ohms } \quad \text { DC power }=5 \mathrm{~V}
$$

Procedure 2: Calculate circuit values

1) Calculate the circuit parameter s and record them in the table below.

	Calculated	Measured
RT		
IT		
VR1		
VR2		
VR3		
IR1		
IR2		
IR3		

Procedure 3: Measure circuit values

1) Complete the pre-use tests on the Fluke 179.
2) Temporarily disconnect the power to your circuit and with your DMM set to read ohms, measure your total circuit resistance; it should match what you calculated. If it doesn't, your circuit is not connected properly!
3) Set the Fluke 179 to read current; make sure to position your leads in the meter correctly.
4) With the power off, break the circuit, insert the meter and restore power and measure circuit current.

IT = \qquad
4) Turn off power, reinsert the meter in between resistors as needed to measure the current through $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}; record your answers below.
$\mathrm{I}_{1}=$ \qquad $\mathrm{I}_{2}=$ \qquad $\mathrm{I}_{3}=$ \qquad
5) Set the meter to read voltage and measure the voltage drops across R_{1}, R_{2}, and R_{3} and record your answers below.
$\mathrm{V}_{\mathrm{R} 1}=$ \qquad $\mathrm{V}_{\mathrm{R} 2}=$ \qquad $\mathrm{V}_{\mathrm{R} 3}=$ \qquad

Circuit checks

1) Does VR1 + VR2 equal the applied voltage?
2) Does IR1 + IR2 + IR3 equal the total current?
3) Assuming one fault, can you think of how you could troubleshoot this entire circuit with a single measurement? How would you do it?
