ELT 101: Basic Electricity: AC/DC

Final Exam

NAME \qquad
DATE \qquad

Circle the most correct answer (1 point each for a total of 100 points)

Basic principles of electricity: the atom, electric current, conductors and insulators, uses in the utility industry

1) An electrical shock:
A) occurs when the body becomes part of an electrical path

B) is annoying but can rarely hurt you
C) can only occur if your body is wet
D) all of the above
2) The generally acknowledged amount of current that can be fatal is:
A) 10 milliamps
B) 100 milliamps
C) 1 amp
D) 5 amps
3) Scientific notation allows us to easily express very large number, but not very small numbers.
A) True
B) False
4) Scientific notation and engineering notation are basically the same thing.
A) True
B) False
5) What is correct scientific notation for the number 0.0047 ?
A) 0.47×10^{-3}
B) 4.7×10^{-2}
C) 4.7×10^{-3}
D) 47×10^{-2}
6) Which of the below are commonly used in engineering notation to represent small numbers?
A) milli
B) micro
C) nano
D) all of the above
7) $\mathrm{LO} / \mathrm{TO} / \mathrm{TO}$ stands for:
A) Look Out/Test Out/Try Out
B) Lock Out/Test Out/Try Out
C) Lock Out/Test Out/Try Out
D) Lock Out/Try Out/Tag Out
8) The charge of an electron is
A. Positive
B. Negative
C. Neutral
9) This particle has a positive charge
A. Proton
B. Neutron
C. Electron
D. all of the above
10) One coulomb equals
A. 6.24×10^{18} electrons
B. 6.24×10^{-18} electrons
C. 6.24×10^{8} electrons
D. 6.24×10^{19} electrons
11) Opposite charges:
A. Are neutral
B. Repel
C. Attract
D. Are always equal
12) The outer electron orbit in any atom is called the:
A. outer shell
B. far orbit
C. valence orbit
D. electron shell
13) How many amps are there in 250,000 millamps?
A. 250 amps
B. 0.25 amps
C. 2.5 amps
D. 25 amps
14) What has more free electrons:
A. Insulators
B. Conductors
C. Both A \& B
D. none of the above

Electric circuits: pressure, power, energy, Ohm's Law

1) Voltage is:
A. electrical pressure
B. a difference of potential
C. charge separation
D. all of the above
2) A battery converts what into electrical energy?
A. motion
B. light
C. heat
D. chemicals
3) You want to increase the voltage by connecting multiple batteries. To do this you must:
A. connect the batteries in parallel (plus to plus, minus to minus)
B. connect the batteries in series (minus to minus)

C connect the batteries in series (plus to minus)
D. connect the batteries in parallel (minus to plus, plus to minus)
4) Three 6V batteries are connected in parallel. What is their combined voltage?
A. 0 V
B. 6 V
C. 12 V
D. 18 V
5) Current is \qquad electron drift.
A. random
B. one way
C. directed
D. none of the above
6) Current is measured in \qquad .
A. coulombs
B. amperes
C. amperes per second
D. coulombs per minute
7) A DMM is a:
A. digital multi-meter
B. dynamic multi-meter
C. digital measurement meter
D. dynamic measurement meter
8) Voltage is measured \qquad a component.
A. across
B. in line with
C. either A or B
9) Current is measured \qquad a component.
A. across
B. in line with
C. either A or B
10) PPE stands for:
A. Peter Piper Express
B. Personal Protective Equipment
C. Personal Protected Environment
D. none of the above
12) There is no difference between a cell and a battery.
A. true
B. false
13) Current is measured with a(n):
A. voltmeter
B. wattmeter
C. ohmmeter
D. ammeter
14) When measuring current:
A. the voltage must be turned off
B. the meter is connected across the load
C. the meter is inserted into and becomes part of the circuit
D. the meter is connected across the voltage source
15) Why is measuring voltage with a meter set to read current so dangerous?
A. because you have to break the circuit
B. because you're effectively placing a short across the point to be measured
C. because voltage can kill you, current can't
D. because measuring voltage is more difficult than measuring current
E. none of the above
16) In a shorted circuit, the voltage across the short would be:
A. normal
B. very high
C. very low
17) In a shorted circuit, the current through the short would be:
A. very high
B. normal
C. very low
18) In an open circuit that is powered, the voltage across the open would be:
A. equal to the source voltage
B. high
C. low
19) In an open circuit, the resistance of the component that is open would be:
A. zero
B. normal
C. high
D. infinite
20) In an open circuit, the current through the open component would be:
A. low
B. high
C. zero
D. normal
21) A resistor's color code is red, red, red, silver. What is its resistance and tolerance?
A. 2.2 K ohm, 10%
B. 3.3 K ohm, 10%
C. 2.2 K ohm, 20%
D. 220 ohm, 10%
22) The unit of measurement of resistance is the:
A. siemen
B. bohr
C. conductor
D. none of the above
23) The watt is the unit measurement for:
A. power
B. energy
C. joules
D. heat
24) Power is the \qquad at which energy is transformed.
A. way
B. rate
C. purpose
D. none of the above
25) The Greek symbol for the unit of resistance is:
A. alpha
B. epsilon
C. omega
D. theta
26) A rheostat is a \qquad terminal device and a potentiometer is a \qquad terminal device.
A. one, two
B. two, three
C. two, one
D. three, two
27) With the AWG system of wire gauge:
A. the higher the number, the larger the wire diameter
B. the higher the number, the smaller the diameter the wire
C. the number tells you the resistivity of the wire
D. the number tells you the conductance of the wire
28) You know a circuit's voltage and you need to calculate power using Ohm's Law. The only thing else you need to know is: (select all that are correct):
A. the current
B. nothing else
C. the capacitance
D. the resistance
29) A 3 K ohms load is connected in series with a 12 V supply. The current flowing is:
A. 40 mA
B. 400 mA
C. 250 mA
D. 4 mA
30) A 3 K ohms load is connected in series with a 12 V supply. The power used by the circuit is:
A. 4.8 W
B. 480 mW
C. 4.8 mW
D. 48 mW
31) A 10 K ohm resistor is in series with a 10 V supply. The current flowing is:

A 100A
B. 1 mA
C. 100 mA
D. 10 A
32) A circuit's voltage is 100 V and the current flowing is 20 mA . What is the circuit's resistance?
A. 5 K ohms
B. 500 ohms
C. 2K ohms
D. 5 ohms
33) A circuit has 20 ohms of resistance with 100 mA flowing. What is the applied voltage?
A. 2 volts
B. 200 volts
C. 200 mV
D. 20 volts
34) A circuit with 1 K ohm resistance and 100 V applied uses how much power?
A. 100 mW
B. 100 W
C. 10 W
D. 1 W
35) In a circuit the voltage is doubled. What will the current do in the circuit assuming the resistance stays the same.
A. double
B. stay the same
C. triple
D. halve
36) In a circuit the current suddenly doubles. The resistance stays the same. What has happened to the circuit?
A. the voltage has tripled
B. the voltage was doubled
C. the voltage was reduced by one half
D. the circuit has opened
37) Doubling the resistance in a circuit will:
A. increase the power by 2
B. increase the voltage by a factor of 2
C. double the current
D. reduce the current by one half

Building DC circuits

1) In a series circuit, only ___ path(s) exist for current flow.
A. one
B. two
C. three
D. four
2) A series circuit is often referred to as a:
A. current divider
B. voltage divider
C. both A \& B
D. none of the above
3) In a series circuit, current is:
A. common
B. the same in all parts of the circuit
C. equal to the sum of the individual currents
D. both A \& B
4) In a series circuit, voltage is:
A. common
B. the same in all parts of the circuit
C. the sum of the individual voltages
D. the same as the source voltage
E. none of the above
5) The amount of voltage dropped across a resistor is directly proportional to:
A. the value of the resistor
B. the physical size of the resistor
C. both A \& B
D. none of the above
6) A short is evident in a series circuit because:
A. current stops flowing
B. the voltage across the shorted resistor equals zero
C. the voltage across the shorted resistor equals the source voltage
D. current decreases
7) An open is evident in a series circuit because:
A. current stops flowing
B. the voltage across the open resistor equals zero
C. the voltage across the open resistor equals the source voltage
D. both A and C
8) You can calculate power in a series circuit by:
A. multiplying the applied voltage by the total current
B. adding together the power dissipation of the individual resistors
C. multiplying the square of the circuit current by the total resistance
D. all of the above
9) If three resistors have voltage drops of 10,20 and 50 volts, what is the source voltage?
A. 20 volts
B. 30 volts
C. 50 volts
D. 80 volts
10) A 1 K ohm, 6 K ohm and 3.3 K ohm resistor are connected in series. What is their total resistance?
A. 10.003 K ohms
B. 10.03 K ohms
C. 10.3 K ohms
D. 4 K ohms
11) A 200 ohm resistor is connected in series with a 100 ohms resistor and a 15 V supply. What resistance does the source voltage see?
A. 50 ohms
B. 300 ohms
C. 75 ohms
D. 100 ohms
12) A 200 ohm resistor is connected in series with a 100 ohms resistor and a 15 V supply. What is the total circuit current?
A. 5 A
B. 500 mA
C. 50 mA
D. 5 mA
13) A 200 ohm resistor is connected in series with a 100 ohms resistor and a 15 V supply. What is the voltage drop across the 200 ohm resistor?
A. 2 volts
B. 10 volts
C. 5 volts
D. 15 volts
14) A 200 ohm resistor is connected in series with a 100 ohms resistor and a 15 V supply. What is the power used by the 100 ohm resistor?
A. 250 mW
B. 2.5 mW
C. 500 mW
D. 25 mW
15) In a parallel circuit, \qquad path(s) exist for current flow.
A. one
B. two or more
C. at least three
D. none of the above
16) A parallel circuit is often referred to as a:
A. current divider
B. voltage divider
C. both A \& B
D. none of the above
17) In a parallel circuit, voltage is:
A. common
B. that same across all the parts of the circuit
C. equal to the sum of the individual voltages
D. both A \& B
18) In a parallel circuit, current is:
A. common
B. the same in all parts of the circuit
C. the sum of the branch currents
D. none of the above
19) The amount of current through a resistor in a parallel circuit is inversely proportional to:
A. the value of the resistor
B. the voltage across in the resistor
C. both A \& B
D. none of the above
20) A node has 6.5 amps and 3 amps coming into it, what is the current out?
A. 3 A
B. 3.5 A
C. 9.5 A
D. 6.5 A
21) A small branch resistance will result in a \qquad branch current.
A. small
B. medium
C. large
D. infinite
22) If two resistors are in parallel, their total resistance equals::
A. the sum of the resistors
B. three times the value of one resistor
C. the product over the sum
D. the sum over the product
23) Four 1 k ohm resistors are in parallel, the total resistance equals:
A. 200 ohms
B. 250 ohms
C. 500 ohms
D. 1 k ohms
E. 4 k ohms
24) Total power in a parallel circuit equals:
A. total current times the applied voltage
B. total current divided by the applied voltage
C. current times the total resistance squared
D. none of the above
25) A series-parallel circuit is a combination of
A. components connected end to end
B. series (one-path) circuits
C. both series and parallel circuits
D. parallel (two or more path) circuits
26) Referring to the circuit at right, what is the current flowing out of node B ?
A. 887 mA
B. 1.33 A
C. 667 mA
D. 2 A

27) Referring to the circuit above, what is the total circuit power?
A. 20 mW
B. 20 watts
C. 200 mW
D. 200 watts
28) When calculating R_{T} in a complex series-parallel circuit, it is best to start:
A. as far away as possible from the voltage source
B. in the middle of the circuit
C. as close to the voltage source as possible
D. working with parallel combinations first
29) Any series-parallel circuit can be simplified into a \qquad and a \qquad .
A. voltage source, equivalent resistance
B. current source, voltage divider
C. resistance, power rating
D. power rating, battery
30) The toughest part of analyzing series-parallel circuits is:
A. using the trigonometry involved
B. determining what's in series and what's in parallel
C. calculating power
D. none of the above
31) The simplest technique to identifying series and parallel components is to:
A. flow voltage
B. flow current
C. use Ohm's Law
D. guess

Electric systems: generating, transmission, sub-station and distribution systems

1) A conductor will have an induced current or voltage only when there is:
A. a stationary magnetic field
B. a stationary conductor
C. relative motion between the wire and the magnetic field
D. both A and B
2) A solenoid is a mechanical switch activated by a magnetic coil.
A. true
B. false
3) Which of the below are an advantage a DC motor offers over an AC motor?
A. higher torque
B. reversibility
C. variable speed
D. all of the above
4) What happens to a 3-phase motor when it loses one phase?
A. it immediately stops
B. it keeps running, but less efficiently
C. it speeds up
D. none of the above
5) A transformer with an input of 480 VAC and an output of 120 VAC is a:
A. isolation transformer
B. auto-transformer
C. step-up transformer
D. none of the above
6) A transformer:
A. changes DC to AC
B. can increase or decrease an AC voltage
C. allows transmission of DC voltage
D. changes AC to DC
7) Peak voltage may be calculated by:
A. multiplying RMS voltage by .707
B. dividing RMS voltage by . 707
C. multiplying RMS voltage by 1.414
D. both B and C
8) A wave has a period of 400 mS . What is the frequency of the wave?
A. 2.5 KHz
B. 250 Hz
C. 25 KHz
D. 2.5 Hz
9) When using transformers in electrical power circuits, the primary purpose of the transformer is to:
A. step up or down DC voltage.
B. Step up or step down AC voltage.
C. Provide isolation
D. provide impedance matching,
10) How do you reduce Eddy Current losses in a transformer?
A. Use larger copper wire for the transformer windings
B. increase the number of secondary windings
C. Reduce the transformers size.
D. Laminate the transformers core.
11) Small dots next to the primary and secondary windings on a transformers schematic indicate:
A. the high and low side.
B. what sides should be grounded.
C. the transformer's phase relationship
D. the hot side of the transformer.
12) An inductor stores electrical energy in the form of $a(n)$ \qquad field, just as a capacitor stores electrical energy in the form of $a(n)$ \qquad field.
A. electric, magnetic
B. magnetic, electric
13) Inductors oppose changes in:
A. current
B. voltage
C. resistance
D. inductance
14) The unit of inductance is the:
A. maxwell
B. ohm
C. tesla
D. henry
15) The capacitance of a capacitor is directly proportional to:
A. the plate area
B. the distance between the plates
C. the constant of the dielectric used
D. both A and C
E. both A and B
16) The capacitance of a capacitor is inversely proportional to:
A. the plate area
B. the distance between the plates
C. the dielectric used
D. both A and C
17) Capacitors store energy in the form of:
A. a magnetic field
B. an electrostatic field
C. an electromagnetic field
D. a positive field

Points possible:

Basic principles of electricity: the atom, electric current, conductors and insulators, uses in the utility industry (14)

Electric circuits: pressure, power, energy, Ohm's Law (37)
Building DC circuits (32)
Electric systems: generating, transmission, sub-station and distribution systems (17)
Total: 100
***** end of final exam *****

