ELT 101: Basic Electricity: AC/DC

Unit 8 Exam: Parallel Circuits

NAME \qquad
DATE \qquad

Circle the most correct answer (2 points each for a total of 20 points)

1) In a parallel circuit, \qquad path(s) exist for current flow.
A. one
B. two or more
C. at least three
D. none of the above
2) A parallel circuit is often referred to as a:
A. current divider
B. voltage divider
C. both A \& B
D. none of the above
3) In a parallel circuit, voltage is:
A. common
B. that same across all the parts of the circuit
C. equal to the sum of the individual voltages
D. both A \& B
4) In a parallel circuit, current is:
A. common
B. the same in all parts of the circuit
C. the sum of the branch currents
D. none of the above
5) The amount of current through a resistor in a parallel circuit is inversely proportional to:
A. the value of the resistor
B. the voltage across in the resistor
C. both A \& B
D. none of the above
6) A node has 6.5 amps and 3 amps coming into it, what is the current out?
A. 3A
B. 3.5 A
C. 9.5 A
D. 6.5 A
7) A small branch resistance will result in a \qquad branch current.
A. small
B. medium
C. large
D. infinite
8) If two resistors are in parallel, their total resistance equals::
A. the sum of the resistors
B. three times the value of one resistor
C. the product over the sum
D. the sum over the product
9) Four 1 k ohm resistors are in parallel, the total resistance equals:
A. 200 ohms
B. 250 ohms
C. 500 ohms
D. 1 k ohms
E. 4 k ohms
10) Total power in a parallel circuit equals:
A. total current times the applied voltage
B. total current divided by the applied voltage
C. current times the total resistance squared
D. none of the above

Solve the following (points for each problem are shown, for a total of 30 points)

Make sure to show your work!

1) In the circuit below, solve for $\mathrm{I}_{\mathrm{T}}, \mathrm{I}_{\mathrm{R} 1}$ and $\mathrm{I}_{\mathrm{R} 2}$ (6 points)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{T}}= \\
& \mathrm{I}_{\mathrm{R} 1}= \\
& \mathrm{I}_{\mathrm{R} 2}= \\
& \hline
\end{aligned}
$$

2) In the circuit below, $\underline{I}_{\underline{\mathrm{R}} 1}=20 \mathrm{~mA}, \mathrm{I}_{\underline{\mathrm{R} 2}}=40 \mathrm{~mA}, \mathrm{R}_{2}=1 \mathrm{k}$; solve for $\mathrm{V}_{\underline{\mathrm{S}}}$ and $\mathrm{R}_{\underline{1}}$. (4 points)

3) For the circuit shown, calculate the following: $I_{\underline{R} 1}, I_{\underline{R} 2}, I_{\underline{R} 3}, I_{\underline{T}}, R_{\underline{T}}$ given that $\quad \underline{V_{s}}=$ $\underline{24 V}, \mathrm{R}_{1}=1 \mathrm{~K}, \mathrm{R}_{2}=470$ ohms and $\mathrm{R}_{3}=10 \mathrm{k}$ (10 points)

$$
\mathrm{I}_{\mathrm{R} 1}=\ldots \mathrm{I}_{\mathrm{R} 2}=\ldots \quad \mathrm{I}_{\mathrm{R} 3}=
$$

$\mathrm{I}_{\mathrm{T}}=$ \qquad $\mathrm{R}_{\mathrm{T}}=$ \qquad
4)) Given the circuit below, what is the applied voltage? (4 points).

$$
\mathrm{V}_{\mathrm{S}}=
$$

5) Identify the fault in the circuit below when $\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{T}}=1.08 \mathrm{~A}$ (6 points).

Faulty component is \qquad
Why?
\qquad
\qquad
\qquad

Points possible:

Multiple choice: 20
Problems: 30

