

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	1 of 31

Mechapracticum Capstone Outline

Capstone Project: Build

Topic: Capstone Project: Build

Estimated completion time: 160 hours.

Purpose:

This Mechapracticum is intended to enable the participant to demonstrate hands-on proficiency, using the training gained in this course of study, to safely implement a typical automation application, described in this document, that the Mechatronic Technician would expect to encounter in nearly any manufacturing facility.

Instructional Outcomes:

The participant will demonstrate the abilities to:

- Recognize situations, conditions, practices or material uses that may present actual or potential damage or injury to personnel, equipment, property, or the environment, and to act to communicate and resolve any unsafe condition or circumstance before proceeding.
- Design and draw electrical and pneumatic schematic diagrams that address the needs of a specific application.
- Design an electrical interface to connect a linear motion potentiometer to an analog input on a programmable logic controller.
- Design a mechanical detail or details to complete an automated mechanical device.
- Machine or fabricate a mechanical detail in order to complete an automated mechanical system.
- Design a ladder logic program to direct the operation of an automated mechanical system.
- Assemble mechanical, electrical and pneumatic details and components to create an automated mechanical system.
- Layout, drill, taps, assemble and wire an electrical control panel, terminal box and operator pushbutton station.
- Interconnect the various electrical devices on an automated mechanical system to the electrical control panel.
- Perform initial electrical and pneumatic power application to an automated mechanical system, verifying proper power consumption and correct interconnections of electrical and pneumatic devices and presetting actuators at an initial safe speed.
- Access programming software on a computer, establish communications between the computer and the programmable logic controller, and download the ladder logic program from the computer to the controller.
- Methodically verify that the program satisfies the needs of the automated mechanical system, editing the ladder logic program as needed.

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	2 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HFC Industrial Trainer		

Mechapracticum Capstone Outline

Capstone Project: Build

- Accurately document and annotate the elements and logic flow of the ladder logic program.
- Troubleshoot introduced faults in the ladder logic program or on the automated mechanical system.
- Establish Ethernet communications between the controller and a central control system.
- Design, program and troubleshoot product flow and status reporting on a network.
- Reporting/Documentation...
- Perform orderly decommissioning/disassembly and disposition of reusable machine components and the disposal or recycling of obsolete or consumable material.

Instructions to Participants

Electrical Design

• The participant must prepare an electrical schematic using ANSI/ISO/IEC symbols and control panel layout drawings. Drawings may be CAD or hand rendered, but are expected to be accurate and legible.

Electronic Design

 The participant must design an electronic circuit to interface a 10,000 Ohm linear motion potentiometer, operating from the 24VDC control circuit voltage, to supply a 0 to 10 Volt input signal to the analog input of the programmable controller. The schematic of this design must be included on the electrical design drawings.

Fluid Power Design

• The participant must prepare a pneumatic schematic using ANSI/ISO symbols and calculate air CFM consumption. Electrical devices related to each cylinder should be included and referenced back to the electrical drawing.

Mechanical Design

• The participant must prepare a working drawing of one of the mechanical details required for operation of the system.

Machining

• The participant must machine or fabricate a mechanical detail necessary for the operation of the system.

Electronic Fabrication

• The participant must assemble an interface circuit on a prototyping perforated circuit board using proper soldering techniques and connect a 10,000 Ohm linear motion potentiometer. The circuit board will then be connected to the control system.

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	3 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HEC Industrial Trainer		

Mechapracticum Capstone Outline

Capstone Project: Build

Electrical Fabrication & Wiring

- A new control enclosure backplate will be presented to each participant. The participant must layout and drill and tap mounting holes in the backplate to accept the various control components, demonstrating basic planning, layout and drilling and tapping proficiency.
- The participant will assemble the components on the backplate and make all interconnecting wiring connections. Each wire shall be identified with wire markers.
- The participant will install and wire the pushbuttons and selector switch.
- The participant will demonstrate orderly wire routing practices when connecting external control devices and the terminals inside the pushbutton enclosure using strain relief wiring devices where wiring passes through the enclosure wall.
- The participant will route and connect the network wiring between the local PLC controller and the central controller.

Fluid Power Assembly

• The participant must select and assemble the pneumatic devices, fittings and tubing.

Programming

• The participant must design and download the ladder logic and network communications program to the PLC.

Troubleshooting

 After the participant has completed construction and startup, various electrical, mechanical and pneumatic faults and malfunctions will be introduced by the evaluator. The participant must troubleshoot to discover and repair the faults.

Presentation

• The participant must prepare and deliver a presentation about the project, describing the function and operation and detailing successes, shortcoming.

Decommissioning/disassembly

• The participant must disassemble all components, returning reusable items to storage and properly disposing of, or recycling, obsolete or consumable material.

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	4 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HFC Wes Bye – Mechatronics SME		

Capstone Project: Build

Scenario for the Build Project

A group of recirculating puck/pallet transfers, each with a probe station, is required for a multistation part gauging and inspection operation. Each station will report production rates and pass/fail ratios via Ethernet to a central controller.

Parts are loaded and unloaded by the operator who then begins the transfer and probe operation with two cycle buttons.

The basic transfer components, and empty control and pushbutton enclosures, will be presented to the participant, who must assemble and connect all of the devices. The control enclosure and pushbutton/terminal box will have adequate holes pre-punched to accept cords connectors, pushbuttons, pilot lights and other wiring devices as necessary.

One or more mechanical details will be omitted requiring the participant to design and machine replacements.

The Start and Stop pushbuttons and the Power On pilot light will operate at 120VAC.

All pilot-duty controls (inductive proximity switches, photoelectric sensor, cycle touch switch) shall operate on 24VDC. These prescribed voltages will require the participant to demonstrate the knowledge and ability to work with multiple voltage sources and levels commonly found in the typical control system.

Network data reporting for the work stations shall be included for fault condition, part status and tracking, and production rate monitoring.

Sequence of Machine Operation

- Upon power and air application, all cylinders will move to the returned position.
- Pushing the RESET/HOME pushbutton will cause the pushers to initialize the puck/pallet locations
- Pushing the CYCLE INITIALIZE pushbutton will enable the palm buttons for operation
- The operator will load a part into the pallet at the load position and then simultaneously actuate both L.CYCLE AND R.CYCLE buttons. Two-hand anti-tiedown, anti-repeat logic programming must be employed.
- Pushers A through D will sequentially advance and return, advancing all pallets one position

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	5 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HFC Industrial Trainer		

Mechapracticum Capstone Outline

Capstone Project: Build

- After a transfer cycle, the probe will advance, and record a reading N seconds after probe motion ceases.
- Upon each transfer the recorded probe reading must be transferred by a shift register to follow each part to the unload station. Actual data or flag bits may be transferred.
- At the unload station, the data or flag bits must be decoded to light a HIGH, PASS, or LOW indicator light.
- This application will require the use of two-hand anti-tie down anti-repeat logic for the cycle buttons and shift register logic to track part status from the probe station to the unload station.

Part tracking logic for network communication between workstations will be required. (specifics needed here)

Instructions to Evaluator:

A drawing and documents illustrating general system layout and functional requirements will be presented to the participant.

The participant will be required to design a detail or circuit, but must not necessarily be required to machine the part or build the circuit as designed. A defect in the design could subsequently hinder the participant during the remainder of the build. The evaluator must asses the design to determine if the part or circuit can be used without causing damage to other equipment.

The participant will be required to:

- Identify a blown fuse <u>and its cause</u>. (Faulty power supply, pinched cord, stray wire, sensor, etc.)
- Identify and replace defective switch or sensor
- Identify and replace a broken or open wire
- Identify and replace or substitute a defective PLC output.
- Identify and replace or substitute a defective PLC input.
- Identify and repair or replace a stuck valve
- Identify and repair or replace a defective cylinder
- Identify and repair plugged or leaking hoses and fittings
- Other TBD
- Some limited logic and network communications troubleshooting with this equipment will be required.

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	6 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HFC Industrial Trainer Wes Bye – Mechatronics SME		

Capstone Project: Build

Fault methodologies will be developed and documented to aid the evaluator in quickly inflicting the faults on the system. The evaluator should also "disturb," and possibly replace but not disable, other wiring and devices to visually camouflage actual faults from the participant.

At the end of the examination, the participant must disassemble the project and return reusable components to their respective storage containers.

The control enclosure backplate will be reused only for early training purposes. This is to prevent subsequent participants from relying on clues from previous screw hole locations when developing their own panel layout during the Capstone exercise.

Used hookup wire and pneumatic tubing will be placed in appropriate bins for reuse and recycling.

Sensor cords may be reused several times until they become too short or develop internal broken conductors.

Tools and Equipment

- Measuring tape
- Hammer
- Center punch
- Drills
- Taps
- Hacksaw
- Electric hand drill
- Wire cutters/strippers
- Multimeter
- Screwdrivers
- Allen wrenches
- End wrenches

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
SPONSORED TAACCCT GRANT: TC23767	PAGE	7 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HFC Industrial Trainer		

Mechapracticum Capstone Outline

Capstone Project: Build

Control Elements

External:

Power On pilot light

US DOL

Master Start pushbutton

Master Stop pushbutton

Step/ Run selector switch

Home/Step Pushbutton

Reset Pushbutton

High Pilot Light

Pass Pilot Light

Low Pilot Light

In Cycle Pilot Light

2 Cycle Pushbuttons

Note: ordinary pushbuttons are used as a cost-saving measure, bearing mind that they would be ergonomically unsuitable for long-term production use due to the possibility of repetitive-stress injury.

4 Pneumatic cylinders configured to push a line of puck/pallets

in a rectangular path

Each cylinder will be equipped with a magnetic piston and advanced and returned position magnetic sensors

Interconnecting wire and cords

Linear Potentiometer coupled to a pneumatic cylinder in the probe station to monitor cylinder position, providing an analog signal to the PLC

Control Panel backplate mounted devices:

Lockable Fusible Disconnect

Control Fuse(s)

24V Power Supply

PLC controller with DC discrete I/O, Analog input and Ethernet capability

DIN Rail Terminal Strip

Wireway

Wire and wire markers

Fuses and/or circuit breakers

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	8 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HEC Industrial Trainer		

Mechapracticum Capstone Outline

Capstone Project: Build

Pneumatic:

- Lockout Air Valve
- Filter
- Regulator

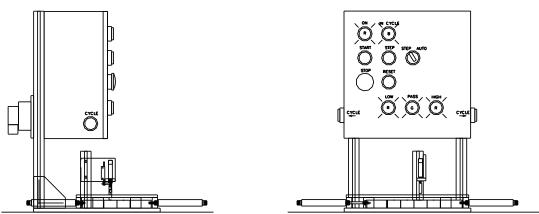
5 manifold-mounted Single-Solenoid Directional Valves.

- 2 Exhaust Mufflers
- 5 Cylinders
- Hose, tubing & fittings

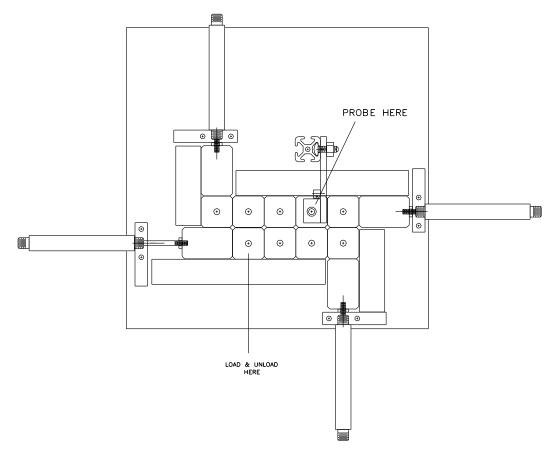
A limited number of "defective" components must be prepared or "sacrificed" for troubleshooting purposes.

System power required

- Single-phase electricity,120VAC
- Compressed air.



Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	9 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HFC Industrial Trainer Wes Bye – Mechatronics SME		


Capstone Project: Build

Reference - General Layout

This page to be provided to participant at the beginning of the exercise.

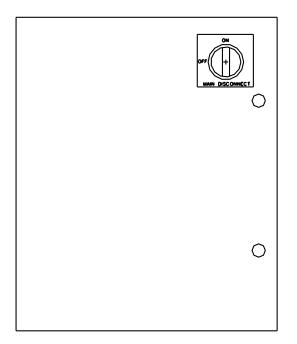
The student will mark sensor and valve locations, I/O assignments and actuator designations on the following drawing.

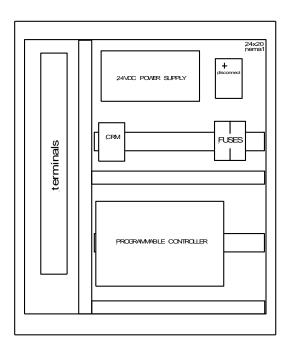
20150209_v001_msamc_mechapracticum_capstone_project_build found in <u>Resources</u> by the M-SAMC Multi-State Advanced Manufacturing Consortium <u>www.msamc.org</u> is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

US

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	10 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HF Wes Bye – Mechatronics SM		

Mechapracticum Capstone Outline


Capstone Project: Build


Reference Control Enclosure Layout

This drawing is for evaluator reference only and will not be shown to the participant.

The participant's layout need not be identical to this design, but must function in a substantially similar manner.

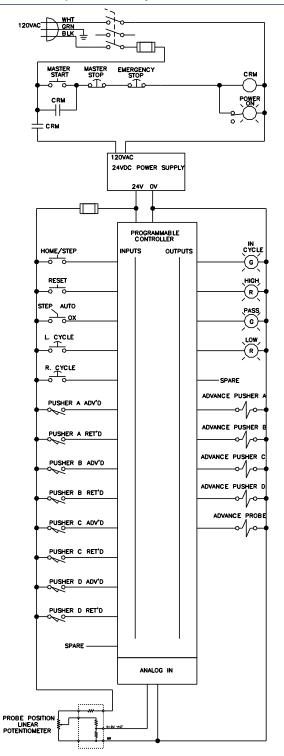
The through-the-door disconnect location on the backplate will be determined by the handle location in the door. All other device locations to be determined by the participant.

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	11 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HFC Wes Bye – Mechatronics SMI		

Capstone Project: Build

Reference Electrical Schematic

This drawing is for evaluator reference only and will not be shown to the participant. The participant's design need not be identical to this design, but must function in a substantially similar manner.

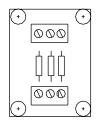


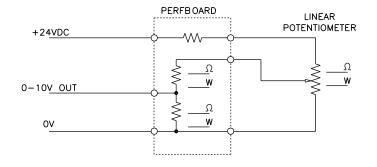
Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	12 of 31

Mechapracticum Capstone Outline

Capstone Project: Build

20150209_v001_msamc_mechapracticum_capstone_project_build found in <u>Resources</u> by the M-SAMC Multi-State Advanced Manufacturing Consortium <u>www.msamc.org</u> is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

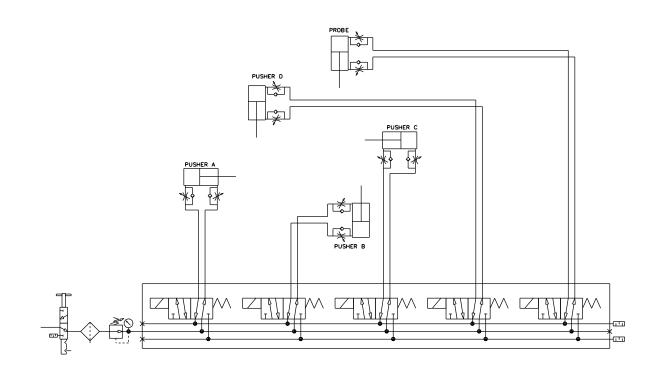



Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	13 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HFC Wes Bye – Mechatronics SMI		

Capstone Project: Build

Reference Electronic Schematic – Linear Motion Potentiometer Interface

This drawing is for evaluator reference and will not be shown to the participant.

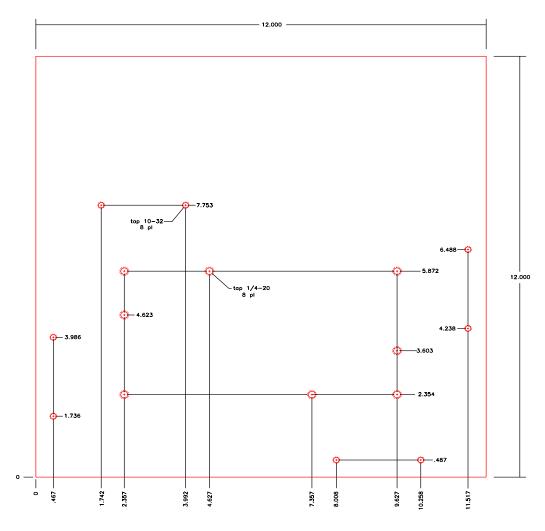


Multi-State	RELEASE DATE	02/09/2015
Advanced Manufacturing Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	14 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – Wes Bye – Mechatronics S		

Capstone Project: Build

Reference Pneumatic Schematic

This drawing is for evaluator reference and will not be shown to the participant.

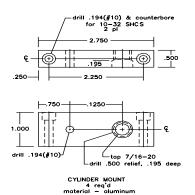


Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	15 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HFC Wes Bye – Mechatronics SME		

Capstone Project: Build

Reference – Transfer Detail

Note: additional holes needed for probe station & terminal box mounting

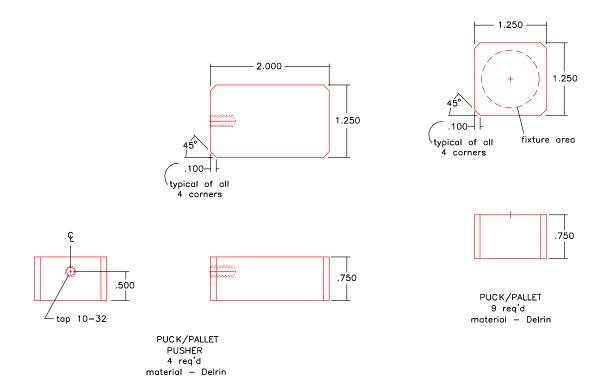


Multi-State	RELEASE DATE	02/09/2015
Advanced Manufacturing Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	16 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – H Wes Bye – Mechatronics S		

Capstone Project: Build

Reference – Transfer Details

^{6.000} 2.250 ill .261(G) & counterbore for 1/4-20 SHCS 2 pl drill .261(G) & counterbore for 1/4-20 SHCS 2 pl | 1.000 1.000 \oplus ዊ ((+ -¢ 500 1.250 5.000 1.000 1.000 SIDE GUIDES 2 req'd material – aluminum END GUIDES 2 req'd material — aluminum


Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	17 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – Hł	FC Industrial Trainer	

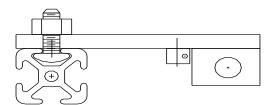
Wes Bye – Mechatronics SME

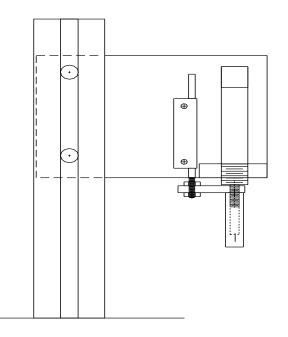
Mechapracticum Capstone Outline

Capstone Project: Build

Reference – Transfer Details

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	18 of 31
PRIMARY DEVELOPER: Glenn Wisniewski – HFC	C Industrial Trainer	


Wes Bye – Mechatronics SME


Mechapracticum Capstone Outline

Capstone Project: Build

Reference – Probe Station Assembly

Detail design to be completed

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	19 of 31

Mechapracticum Capstone Outline

Capstone Project: Build

Bill of Materials:

	MAT2 Capstone Pallet/Puck Transfer & Probe			1/23/	/2015
Qty	Item Description	Source	Each	Tota	al
1	NEMA 1 Control Enclosure, 20"H x 16"W x 7"D	McM #7561K49	\$196.41	\$	196.41
1	Enclosure Panel, 17"H x 14.5"W	McM #7561K921	\$ 22.81	\$	22.81
1	NEMA 1 Terminal Enclosure, 12H x 12W x 4D	McM #7561K38	\$ 78.55	\$	78.55
1	Enclosure Panel, 10-1/4" x 10-1/4"	McM #7561K861	\$ 11.98	\$	11.98
1	Disconnect	McM #7277K52	\$ 62.97	\$	62.97
1	6' Wire Duct	Allied #70163162	\$ 32.03	\$	32.03
1	6' Duct Cover	Allied #70162892	\$ 4.88	\$	4.88
1	DIN Rail	Allied # 70169109	\$ 5.47	\$	5.47
1	24VDC, 2.5A Power Supply	Allied #70211350	\$163.73	\$	163.73
5	Fuse Block	McM #7641K36	\$ 10.74	\$	53.70
1	Fuses, pk of 5	McM #7085K46	\$ 2.72	\$	2.72
2	Fuse Block	McM #6113T11	\$ 11.39	\$	22.78
2	Fuses	McM #72035K512	\$ 14.03	\$	28.06
1	Relay	Allied #70056518	\$ 37.75	\$	37.75
100	terminals	Allied #70169571	\$ 1.01	\$	101.00
1	Pilot Light, Red 120VAC	McM #7380K4	\$ 18.25	\$	18.25
2	Pilot Light, Red 24VDC	McM #7380K3	\$ 18.25	\$	36.50
		1			

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	20 of 31

Mechapracticum Capstone Outline

1	Pilot Light, Green 24VDC	McM #7380K3	\$ 18.25	\$ 18.25
5	Pushbutton, Black	McM #6749K25	\$ 14.74	\$ 73.70
1	Pushbutton, Red Mushroom Head	McM #6749K92	\$ 27.15	\$ 27.15
1	Selector Switch	McM #6749K96	\$ 20.59	\$ 20.59
1	37-socket Amphenol Circular Connector	Newark #90WX9529	\$ 23.96	\$ 23.96
1	37-pin Amphenol Circular Connector	Newark #92F5585	\$ 52.33	\$ 52.33
1	Cable Clamp, Amphenol Circular Connector	Newark #96F4482	\$ 5.71	\$ 5.71
1	Cord Grip,	Allied #70074405	\$ 3.51	\$ 3.51
14	Cord Grip,	Allied #70074444	\$ 0.96	\$ 13.44
1	Potentiometer, Linear Motion, 10K	Newark #04B2321	\$ 37.89	\$ 37.89
1	Pneumatic Lockout Valve	McM #48125K52	\$127.34	\$ 127.34
1	Pneumatic Filter	McM #4958K26	\$ 54.38	\$ 54.38
1	Pneumatic Regulator, 2-125PSI	McM #41735K12	\$ 31.30	\$ 31.30
1	Pressure Gauge	McM #3847K72	\$ 10.84	\$ 10.84
5	Pneumatic Single Solenoid Directional Valve, 24VDC	McM #62165K83	\$ 53.10	\$ 265.50
1	Manifold, 5 sta.	McM #6196K5	\$ 64.62	\$ 64.62
4	Pneumatic Cylinders, 2" stroke	McM #4952K657	\$ 53.08	\$ 212.32
1	Pneumatic Cylinder, 1/2" stroke	McM #6498K322	\$ 18.98	\$ 18.98
10	Flow Control, 10-32 port	McM #4076K29	\$ 20.81	\$ 208.10
10	Tube Fitting 1/8" tube to 1/8" npt	McM #5779K102	\$ 2.76	\$ 27.60

Multi-State	RELEASE DATE	02/09/2015
Advanced Manufacturing Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	21 of 31

Mechapracticum Capstone Outline

12	Nylon Tubing 1/8"	McM #5097T312	\$ 0.44	\$ 5.28
1	Aluminum Plate, 12" x 12" x 1/2"	McM #9246K33	\$ 46.51	\$ 46.51
1	Aluminum Rectangle, 1/4" x 4" x 1'	McM #8975K514	\$ 9.72	\$ 9.72
1	Aluminum Rectangle, 1" x 1" x 3'	McM #9008K14	\$ 17.92	\$ 17.92
1	Aluminum Rectangle, 1" x 1/2" x 1'	McM #8975K11	\$ 4.99	\$ 4.99
1	Aluminum T-Slot Extrusion	McM# 47065T101	\$ 19.79	\$ 19.79
4	90° T-slot Plate	McM #47065T117	\$ 6.70	\$ 26.80
7	T-Slot Fasteners, pk of 4	McM #47065T142	\$ 2.30	\$ 16.10
1	Delrin, white, 3/4" x 1-1/2" x 2'	McM #8739K43	\$ 12.60	\$ 12.60
1	Polycarbonate Sheet, 12" x 12" x 3/8"	McM #8574K31	\$ 29.23	\$ 29.23
1	Programmable Controller, Siemens S7 1200	Siemens	\$325.00	\$ 325.00
	w/programming software (school discount, 6 packages for \$1945)			
1	Misc Materials (screws, pipe fittings)		\$100.00	\$ 100.00
1	Misc Consumables (wire, tags, etc)		\$ 75.00	\$ 75.00
			Total	\$ 2,866.04

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	22 of 31
DDIMARY DEVELOPED, Clann Wignigwaki	HEC Industrial Trainer	

Mechapracticum Capstone Outline

Capstone Project: Build

Rubric:

	capractica oric		Student Name			[late				
MA	T2 Capstone	Mech	apracticum								
	Design	P T S	(A) Highly Proficient	(B) Compe tent	(C) Partially Competent/ Developing	(D) Limite	(E) Ma d Impro Requi	vement	Possible points	Ratings A - E	Points Awarded
1	Mechanical Design		Design accurately dimensione d & drawn. Completely understand able if another person had to build from the design		Design adeqquate - critical dimnensions in place		weak struct	urate I sions, ure, opriate ials			
	Electrical Design		Electrically functional & efficient. Logical layout, presentatio n & flow for easy understand ing. All component s and wires accurately identified and		Design adequate for function. Some components or wires may not be clearly identified. Wiring changes may be necessary at startup.		desigr electri device	nction cally as ned, cal e ge may			

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
SPONSORED TAACCCT GRANT: TC23767	PAGE	23 of 31

US DOL SPONSORED TAACCCT GRANT:

PRIMARY DEVELOPER: Glenn Wisniewski - HFC Industrial Trainer

Wes Bye – Mechatronics SME

Mechapracticum Capstone Outline

1			numbered.						
			numbered.						
	Pneumatic		Accurate,		Design		System will		
	Design		complete		adequate for		not function		
	Design		functonal		function, but		pneumatically		
			design. Air		identifying		as designed,		
			requiremen		labels		mechanical		
			ts defined.		missing or		device		
					symbols		damage may		
					inaccurately		result.		
					drawn				
	Fabrication	Р	(A) Highly	(B)	(C) Partially	(D)	(E) Major		
	Tabrication	T	Proficient	Compe	Competent/	Limited	Improvement		
			Proncient						
			1 ronoiont	-		Linnea	-		
		S		tent	Developing	Linitou	Required		
2	Layout &			-	Developing	Linitou	Required		
2	Layout &		accurate	-	Developing Approximate		Required Inacurate		
2	prepare		accurate layout &	-	Developing Approximate spacing &		Required		
2	prepare details for		accurate layout & center	-	Developing Approximate		Required Inacurate		
2	prepare details for drilling &		accurate layout &	-	Developing Approximate spacing &		Required Inacurate		
2	prepare details for		accurate layout & center	-	Developing Approximate spacing &		Required Inacurate		
	prepare details for drilling & milling		accurate layout & center	-	Developing Approximate spacing &		Required Inacurate		
2	prepare details for drilling & milling Mill detail(s)		accurate layout & center	-	Developing Approximate spacing &		Required Inacurate		
	prepare details for drilling & milling		accurate layout & center	-	Developing Approximate spacing &		Required Inacurate		
3	prepare details for drilling & milling Mill detail(s) to shape		accurate layout & center punch	-	Developing Approximate spacing & centering		Required Inacurate location		
	prepare details for drilling & milling Mill detail(s) to shape Drill		accurate layout & center punch all holes	-	Developing Approximate spacing & centering minor		Required Inacurate location major location		
3	prepare details for drilling & milling Mill detail(s) to shape Drill required		accurate layout & center punch all holes drilled on	-	Developing Approximate spacing & centering minor location		Required Inacurate location major location deviation -		
3	prepare details for drilling & milling Mill detail(s) to shape Drill		accurate layout & center punch all holes	-	Developing Approximate spacing & centering minor location deviation -		Required Inacurate location major location deviation - rework or		
3	prepare details for drilling & milling Mill detail(s) to shape Drill required		accurate layout & center punch all holes drilled on	-	Developing Approximate spacing & centering minor location deviation - minor		Required Inacurate location major location deviation - rework or modification		
3	prepare details for drilling & milling Mill detail(s) to shape Drill required		accurate layout & center punch all holes drilled on	-	Developing Approximate spacing & centering minor location deviation - minor compensatio		Required Inacurate location major location deviation - rework or modification may be		
3	prepare details for drilling & milling Mill detail(s) to shape Drill required		accurate layout & center punch all holes drilled on	-	Developing Approximate spacing & centering minor location deviation - minor compensatio n may be		Required Inacurate location major location deviation - rework or modification		
3	prepare details for drilling & milling Mill detail(s) to shape Drill required		accurate layout & center punch all holes drilled on	-	Developing Approximate spacing & centering minor location deviation - minor compensatio		Required Inacurate location major location deviation - rework or modification may be		
3	prepare details for drilling & milling Mill detail(s) to shape Drill required		accurate layout & center punch all holes drilled on	-	Developing Approximate spacing & centering minor location deviation - minor compensatio n may be		Required Inacurate location major location deviation - rework or modification may be		
3	prepare details for drilling & milling Mill detail(s) to shape Drill required		accurate layout & center punch all holes drilled on	-	Developing Approximate spacing & centering minor location deviation - minor compensatio n may be		Required Inacurate location major location deviation - rework or modification may be		

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
SPONSORED TAACCCT GRANT: TC23767	PAGE	24 of 31

US DOL SPONSORED TAACCCT GRANT: TC23767

24 of 31

PRIMARY DEVELOPER: Glenn Wisniewski – HFC Industrial Trainer Wes Bye – Mechatronics SME

Mechapracticum Capstone Outline

Capstone Project: Build

	Fixture Assembly	P T S	(A) Highly Proficient	(B) Compe tent	(C) Partially Competent/ Developing	(D) Limited	(E) Major Improvement Required		
5	Assemble or mount mechanical, electrical and pneumatic details		all devices securely positioned & aligned		some minor misalignment		numerous assembly & alignment errors, mechanical jamming		
	Electrical Wiring	P T S	(A) Highly Proficient	(B) Compe tent	(C) Partially Competent/ Developing	(D) Limited	(E) Major Improvement Required		
	Electrical connections inside enclosures		All conductors correctly terminated - no troublesho oting or rewiring required		Most conductors correctly terminated - minimal troubleshooti ng or rewiring required		Multiple wiring errors - extensive troubleshootin g & rewiring required		
	Wire routing inside enclosures		All conductors neatly routed, wire markers uniformly placed & readable without		Conductors adequately routed but may be irregularly bunched or clustered, markers may be difficult to read, stray		Careless or haphazard routing, wires too short or too long, numerous loose wire strands or loose		

20150209 v001 msamc mechapracticum capstone project build found in Resources by

the M-SAMC Multi-State Advanced Manufacturing Consortium www.msamc.org is licensed under a Creative Commons Attribution 4.0 International License.

US DOL

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
SPONSORED TAACCCT GRANT: TC23767	PAGE	25 of 31

PRIMARY DEVELOPER: Glenn Wisniewski – HFC Industrial Trainer Wes Bye – Mechatronics SME

Mechapracticum Capstone Outline

		manipulatin g wires, wires securely captured in terminals with no loose strands.		strands of wire visible at terminals.		terminations.		
Field wiring		All cords and conductors well routed, secured and dressed, conforming to structural elements and secured away from moving machinery, excess cordage neatly bundled in terminal box		Cords adequately routed but may be irregularly bunched or clustered		Careless or haphazard routing, cords too short or too long, cords may be in danger of damage from moving machinery		
Pneumatic piping	P T S	(A) Highly Proficient	(B) Compe tent	(C) Partially Competent/ Developing	(D) Limited	(E) Major Improvement Required		

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
SPONSORED TAACCCT GRANT: TC23767	PAGE	26 of 31

US DOL SPONSORED TAACCCT GRANT: TC2376/

PRIMARY DEVELOPER: Glenn Wisniewski - HFC Industrial Trainer Wes Bye – Mechatronics SME

Mechapracticum Capstone Outline

Threaded		All		Functional		cross-		
fittings		threaded		assembly but		threaded or		
-		fittings		some leaks		loose fittings		
		correctly		or loose		with		
		assembled		fittings may		numerous		
		with no air		be present,		leaks,		
		leaks or		excessive or		excessive or		
		excessive		insufficient		insufficient		
		pipe		sealant		pipe sealant,		
		sealant, no				overtightened		
		cross-				fittings		
		threaded or				resulting in		
		rounded-				damage to		
		over fittings				fittings or		
						devices		
 Flexible		tubing ends		Functional		tubing cut end		
tubing		squarely		assembly but		ragged or at		
		cut, routed		some leaks		an angle,		
		with no		may be		creased or		
		sharp		present,		pinched,		
		bends or		tubing		insufficient or		
		kinks,		lengths may		excessive		
		conforming		be slightly		length		
		to		short or long,		resulting in		
		structural		kinks or		kinks or		
		elements		bends		damage from		
		and		possible		moving		
		secured				machinery.		
		away from				poorly routed		
		moving				and secured.		
		machinery						
Logic	Ρ	(A) Highly	(B)	(C) Partially	(D)	(E) Major		
Developme	Т	Proficient	Compe	Competent/	Limited	Improvement		
nt	S		tent	Developing		Required		
				1				

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	27 of 31

PRIMARY DEVELOPER: Glenn Wisniewski – HFC Industrial Trainer

Wes Bye – Mechatronics SME

Mechapracticum Capstone Outline

Capstone Project: Build

1	Design &		logic		logic satisfies		logic does not		
	Presentatio		satisfies all		-		address all		
					most				
	n		functional		functional		functional		
			requiremen		requirements		requirements,		
			ts, is well		but may lack		may have		
			documente		adequate		safety issues,		
			d and well		descriptions		has		
			structured		and labels,		numerous		
			to be easily		may be		omission of		
			understood		randomly		descriptions		
			and		structured,		and labels,		
			followed by		making		difficult to		
			others.		understandin		follow and		
					g of the intent		understand		
					of the logic		the flow &		
					flow difficult		intent		
	Troublesho	Ρ	(A) Highly	(B)	(C) Partially	(D)	(E) Major		
	oting	Т	Proficient	Compe					
	ound		Froncient	Compe	Competent/	Limited	Improvement		
	oung		Froncient	-	Competent/ Developing	Limited	Improvement Required		
	oung	S	Proficient	tent	Developing	Limited	Required		
	Initial		student	-	-	Limited			
				-	Developing	Limited	Required		
	Initial		student	-	Developing Student had	Limited	Required Student was		
	Initial electricity/air		student readily	-	Developing Student had to be	Limited	Required Student was unable to		
	Initial electricity/air application,		student readily discovered	-	Developing Student had to be prompted		Required Student was unable to solve		
	Initial electricity/air application, preliminary motion		student readily discovered and	-	Developing Student had to be prompted occasionally		Required Student was unable to solve numerous		
	Initial electricity/air application, preliminary		student readily discovered and corrected	-	Developing Student had to be prompted occasionally during startup and fault	Limited	Required Student was unable to solve numerous problems, even with		
	Initial electricity/air application, preliminary motion testying by manually		student readily discovered and corrected constructio	-	Developing Student had to be prompted occasionally during startup	Limited	Required Student was unable to solve numerous problems,		
	Initial electricity/air application, preliminary motion testying by manually actuating		student readily discovered and corrected constructio n errors	-	Developing Student had to be prompted occasionally during startup and fault discovery.	Limited	Required Student was unable to solve numerous problems, even with prompting,		
	Initial electricity/air application, preliminary motion testying by manually actuating valves,		student readily discovered and corrected constructio n errors and	-	Developing Student had to be prompted occasionally during startup and fault discovery. Most	Limited	Required Student was unable to solve numerous problems, even with prompting, exhibited no method or		
	Initial electricity/air application, preliminary motion testying by manually actuating valves, setting flow		student readily discovered and corrected constructio n errors and instructor- inflicted	-	Developing Student had to be prompted occasionally during startup and fault discovery. Most machine functions	Limited	Required Student was unable to solve numerous problems, even with prompting, exhibited no		
	Initial electricity/air application, preliminary motion testying by manually actuating valves, setting flow control		student readily discovered and corrected constructio n errors and instructor- inflicted faults using	-	Developing Student had to be prompted occasionally during startup and fault discovery. Most machine	Limited	Required Student was unable to solve numerous problems, even with prompting, exhibited no method or system for troubleshootin		
	Initial electricity/air application, preliminary motion testying by manually actuating valves, setting flow control speeds,		student readily discovered and corrected constructio n errors and instructor- inflicted faults using methodical	-	Developing Student had to be prompted occasionally during startup and fault discovery. Most machine functions	Limited	Required Student was unable to solve numerous problems, even with prompting, exhibited no method or system for troubleshootin g, rather,		
	Initial electricity/air application, preliminary motion testying by manually actuating valves, setting flow control speeds, verifying		student readily discovered and corrected constructio n errors and instructor- inflicted faults using methodical &	-	Developing Student had to be prompted occasionally during startup and fault discovery. Most machine functions	Limited	Required Student was unable to solve numerous problems, even with prompting, exhibited no method or system for troubleshootin g, rather, randomly		
	Initial electricity/air application, preliminary motion testying by manually actuating valves, setting flow control speeds, verifying sensor		student readily discovered and corrected constructio n errors and instructor- inflicted faults using methodical & systematic	-	Developing Student had to be prompted occasionally during startup and fault discovery. Most machine functions	Limited	Required Student was unable to solve numerous problems, even with prompting, exhibited no method or system for troubleshootin g, rather, randomly probing or		
	Initial electricity/air application, preliminary motion testying by manually actuating valves, setting flow control speeds, verifying sensor function &		student readily discovered and corrected constructio n errors and instructor- inflicted faults using methodical & systematic analysis.	-	Developing Student had to be prompted occasionally during startup and fault discovery. Most machine functions	Limited	Required Student was unable to solve numerous problems, even with prompting, exhibited no method or system for troubleshootin g, rather, randomly probing or wiggling wires		
	Initial electricity/air application, preliminary motion testying by manually actuating valves, setting flow control speeds, verifying sensor function & location,		student readily discovered and corrected constructio n errors and instructor- inflicted faults using methodical & systematic analysis. Full	-	Developing Student had to be prompted occasionally during startup and fault discovery. Most machine functions	Limited	Required Student was unable to solve numerous problems, even with prompting, exhibited no method or system for troubleshootin g, rather, randomly probing or wiggling wires or forcing		
	Initial electricity/air application, preliminary motion testying by manually actuating valves, setting flow control speeds, verifying sensor function & location, step logic		student readily discovered and corrected constructio n errors and instructor- inflicted faults using methodical & systematic analysis. Full machine	-	Developing Student had to be prompted occasionally during startup and fault discovery. Most machine functions	Limited	Required Student was unable to solve numerous problems, even with prompting, exhibited no method or system for troubleshootin g, rather, randomly probing or wiggling wires or forcing actuators or		
	Initial electricity/air application, preliminary motion testying by manually actuating valves, setting flow control speeds, verifying sensor function & location,		student readily discovered and corrected constructio n errors and instructor- inflicted faults using methodical & systematic analysis. Full	-	Developing Student had to be prompted occasionally during startup and fault discovery. Most machine functions	Limited	Required Student was unable to solve numerous problems, even with prompting, exhibited no method or system for troubleshootin g, rather, randomly probing or wiggling wires or forcing		

20150209_v001_msamc_mechapracticum_capstone_project_build found in <u>Resources</u> by the M-SAMC Multi-State Advanced Manufacturing Consortium <u>www.msamc.org</u> is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	28 of 31

Mechapracticum Capstone Outline

Capstone Project: Build

	logic function.		achieved.				achieve full machine function.		
	Safety Habits	P T S	(A) Highly Proficient	(B) Compe tent	(C) Partially Competent/ Developing	(D) Limited	(E) Major Improvement Required		
6	Safe Work Practices		Used appropriate PPE; practiced common safety practices		Most safety practices used		Demonstrated unsafe working practices		
7	Safety Attitude		Work practices demonstrat ed safety consciousn ess in all procedures ; looked out for safety of others		Most of the time worked safely and showed some concern for safety of others		Dangerous worker; did not look out for safety of others		
8	Machining safety		Guards & safe workholdin g used on drill press or mill		Had to be prompted		Dangerous worker; did not look out for safety of others		

20150209_v001_msamc_mechapracticum_capstone_project_build found in <u>Resources</u> by the M-SAMC Multi-State Advanced Manufacturing Consortium <u>www.msamc.org</u> is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015		
Consortium	VERSION	v 001		

US DOL SPONSORED TAACCCT GRANT: TC23767

PAGE

29 of 31

PRIMARY DEVELOPER: Glenn Wisniewski – HFC Industrial Trainer Wes Bye – Mechatronics SME

Mechapracticum Capstone Outline

12	WORK HABITS Work	P T S	(A) Highly Proficient	(B) Compe tent	(C) Partially Competent/ Developing Honestly	(D) Limited	(E) Major Improvement Required Showed		
12	Attitude		finding and correcting problem		attempted to find and correct problems		frustration in finding and correctly problem		
13	Work Procedure		Always followed standard procedures ; demonstrat ed planning and organizatio n skills in correcting the problem		Complied with standard procedures; Showed some plan and organization in working		Did not follow standard procedures; Disorganized and slipshod methods;		
14	Professional ism		Work showed pride in accomplish ment		Tried hard and shows promise		Work lacks praiseworthy factors		
15	Self- confidence		Appeared comfortabl e and posed when performing tasks		Fairly self- confident; occasionally disconnected		Hesitant, timid, uncertainty		
16	Knowledge of job		Has an exceptional ly thorough		Has good knowledge but needed		Has inadequate knowledge of		

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	30 of 31

Mechapracticum Capstone Outline

		knowledge	coaching		job			
		of the job						
				Total Pos	sible Points	0		
	I							
				Score of	Total Points		0	
				Final Gra	de Percent		#DIV/0	!
				Final Lett	ter Grade Mech	apractica	#DIV/0	!

Multi-State Advanced Manufacturing	RELEASE DATE	02/09/2015				
Consortium	VERSION	v 001				
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	31 of 31				
PRIMARY DEVELOPER: Glenn Wisniewski – HFC Industrial Trainer						

Wes Bye – Mechatronics SME

Mechapracticum Capstone Outline

Capstone Project: Build

SAFETY DISCLAIMER:

M-SAMC educational resources are in no way meant to be a substitute for occupational safety and health standards. No guarantee is made to resource thoroughness, statutory or regulatory compliance, and related media may depict situations that are not in compliance with OSHA and other safety requirements. It is the responsibility of educators/employers and their students/employees, or anybody using our resources, to comply fully with all pertinent OSHA, and any other, rules and regulations in any jurisdiction in which they learn/work. M-SAMC will not be liable for any damages or other claims and demands arising out of the use of these educational resources. By using these resources, the user releases the Multi-State Advanced Manufacturing Consortium and participating educational institutions and their respective Boards, individual trustees, employees, contractors, and sub-contractors from any liability for injuries resulting from the use of the educational resources.

DOL DISCLAIMER:

This product was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

RELEVANCY REMINDER:

M-SAMC resources reflect a shared understanding of grant partners at the time of development. In keeping with our industry and college partner requirements, our products are continuously improved. Updated versions of our work can be found here: http://www.msamc.org/resources.html.

