

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
_ SPONSORED TAACCCT GRANT: TC23767	PAGE	1 of 11

Mechapracticum Outline

Fabrication and Assembly

Topic: Mechapracticum Period 1 & 2 Fabricate and Assembly

Estimated completion time: 16 hours

Purpose:

The purpose of this job is to sketch, layout and fabricate a component demonstrating the use of blueprints or specifications.

Instructional Outcomes:

The participant will demonstrate the application of their skill and knowledge in the following topical areas:

- Machining
- Blueprint Reading
- Safety

Instructions to Students:

- 1. The evaluator will provide you with a description of a component that you must sketch, layout and fabricate.
- 2. You must sketch the components as described by the evaluator.
- 3. Select the appropriate materials and create a bill of materials
- 4. Search the appropriate reference material/charts required to complete the project, and identify the equipment for the component being fabricated
- 5. You must correctly and accurately fabricate the component out of raw materials.
- 6. Assemble the component and give the final product to the evaluator.
- 7. Your solution must be safe, durable, functional, load appropriate, and reliable.

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
OL SPONSORED TAACCCT GRANT: TC23767	PAGE	2 of 11
PRIMARY DEVELOPERS:	Ford College	

Mechapracticum Outline

Fabrication and Assembly

Safety

The student will demonstrate all safety practices learned previous instruction including assuring that all sharp edges are deburred.

Instructions to Evaluator:

Provide the candidate with a description of a problem situation which requires the fabrication of a bracket or support. The student must sketch, layout and fabricate the correct solution to the problem situation. Use of Manufacturing Plans

The student's solution must be safe, durable, functional, load appropriate, and reliable.

Equipment and Materials

- Computer with internet access
- Drill
- Saw
- Tap
- Measuring tools (including calipers)
- Drafting tools
- Raw material
- PPE
- Hand tools (socket wrenches, screwdrivers, layout table)

Manufacturing Plans:

- Lab 1 Fabricate
- Lab 2 Assembly
- Lab 3 Final Lab

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
SPONSORED TAACCCT GRANT: TC23767	PAGE	3 of 11

Mechapracticum Outline

Fabrication and Assembly

Manufacturing Plan for Manual Machining

Part Number: Lab 1 & 2	Quantity:	Material: Mild Steel	Manufacturing Date:
Part Name: Lab 1 Assembly	1	Stock: 5/8 X 3 X 5 & 3/8 X 1 X 3	
Part Description: Plate & Bracket			

Operation #	Machine Description	Operation Description	Tool Type	Cycle Time
1	Band-saw	SAW MATERIAL FOR BOTH PARTS	HORIZONTAL BAND SAW	30 MIN
2	LAYOUT SURFACE PLATE	LAYOUT PART PER PRINT		15 MIN
3	Manual Mill	CENTER DRILL AND C' SINK PER PRINT	½ DIA CENTER DRILL	30 MIN
4	Drill Press	DRILL & REAM HOLES PER PRINT ¼ REAMER, 3/8 REAMER, ½ REAMER	15/64 DRILL 23/64 DRILL 15/32 DRILL	45 MIN
5	Drill Press	DRILL AND HAND TAP PER PRINT	F DRILL 5/16-18 TAP	30 MIN
6	Manual Mill	DRILL TWO ½ DIAMERTER HOLES ON BRACKET FOR THE SLOT	½ DRILL	15 MIN
7	Manual Mill	MILL FLAT AND SLOT ON BRACKET	½ & 1.0 DIA END MILL	45 MIN
8	Belt sander	DEBURR ALL EDGES BOTH PARTS	SAND PAPER	15 MIN
9	SURFACE GRINDER	GRIND TOP & BOTTOM LAB 1 PLATE	GRINDING WHEEL	30 MIN
10	ASSEMBLY TABLE	ASSEMBLE PART 5/16 – 18 SHCS		

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
L SPONSORED TAACCCT GRANT: TC23767	PAGE	4 of 11

Mechapracticum Outline

Fabrication and Assembly

Notes/drawings/setup sketch

Tips:

- Always adjust speed while machine is running
- Ream at half speed
- Edge finder is used at 1000 rpm
- Clean machines and sweep floors at end of class

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
L SPONSORED TAACCCT GRANT: TC23767	PAGE	5 of 11

PRIMARY DEVELOPERS:

Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

Fabrication and Assembly

Manufacturing Plan for Manual Machining

Part Number: LAB 3	Quantity:	Material: MILD STEEL	Manufacturing Date:
Part Name: FINAL LAB 3	1	Stock: 2 REQUIRED 3/8 X 1 X 3	
Part Description: TO			

Operation #	Machine Description	Operation Description	Tool Type	Cycle Time
1	Band-saw	CHOOSE AND SAW MATERIAL TO LENGTH	HORIZONTAL BAND SAW	15 MIN
2	LAYOUT SURFACE PLATE	LAYOUT BOTH UPPER AND LOWER PARTS PER PRINT	HEIGHT GAGE	15 MIN
3	Manual Mill	CENTER DRILL ALL HOLES BOTH PARTS PER PRINT	½ DIA CENTER DRILL	30 MIN
4	Manual Mill	DRILL HOLES PER PRINT BOTH PARTS	.53 DIA DRILL (N .303) DRILL .425 TAP DRILL	30 min
5	Manual Mill	REAM HOLES PER PRINT	5/16 DIA OVER/UNDER REAMERS	30 MIN
6	Drill Press	C' SINK ALL HOLES + .030 DIA LARGER THAN HOLE SIZE HAND TAP ½-13 TPI	82 DEGREE C' SINK BIT ½-13 TAP	30 MIN
7	Belt sander	DEBURR BOTH PARTS ALL SURFACES	SAND PAPER	15 MIN
8	ASSEMBLY TALBE	ASSEMBLE PARTS 5/16 DOWEL PINS & ½ - 13 SHCS	5/16 DOWEL PINS ½ SHCS	15 MIN
9	Choose Machine			
10	Choose Machine			

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
L SPONSORED TAACCCT GRANT: TC23767	PAGE	6 of 11

Mechapracticum Outline

Fabrication and Assembly

Notes/drawings/setup sketch

Tips:

- Always adjust speed while machine is running
- Ream at half speed
- Edge finder is used at 1000 rpm
- Clean machines and sweep floors at end of class

Rubrics:

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
L SPONSORED TAACCCT GRANT: TC23767	PAGE	7 of 11

PRIMARY DEVELOPERS:

Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

Fabrication and Assembly

	Job 1 (Check 1)	Job 2								
	<u> </u>									
	SKETCHING	PTS	(A) Highly Proficient	(B) Competent	(C) Partially Competent/Developing	(D) Limited	(E) Major Improvement Required	Possible points	Ratings A - E	Points Awarded
1	Completeness of sketch	25	All features and details are represented in at least an isometric view		Major features and details are provided; but some missing		Too many features missing to be able to produce the task	25		
2	Clarity of sketch	20	Legible; no ambiguity in the design		Some assumptions need to be made in order to produce the part		Too many assumptions need to be made; part could not be produced from the sketch	20		
	MATERIALS AND PROCESSES	PTS	(A) Highly Proficient	(B) Competent	(C) Partially Competent/Developing	(D) Limited	(E) Major Improvement Required	Possible points	Ratings A - E	Points Awarded
3	Selection of materials for bill of materials	10	Appropriate materials for load, safety, cost		Needed assistance or prompting to select materials		Unable to select appropriate materials	10		
4	Selection of fasteners for component	25	Appropriate fasteners for load, safety, cost		Needed assistance or prompting to select fasteners		Unable to select appropriate fasteners	25		
5	Selection of tools	10	Appropriate drills and taps		Needed assistance or prompting		Unable to select appropriate tools	10		
6	Resource utilization	25	Used appropriate resources for selecting materials, selecting fasteners, and tools		Needed assistance or prompting		Unable to use resources	25		

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
L SPONSORED TAACCCT GRANT: TC23767	PAGE	8 of 11

Mechapracticum Outline

Fabrication and Assembly

	LAYOUT AND FABRICATION	PTS	(A) Highly Proficient	(B) Competent	(C) Partially Competent/Developing	(D) Limited	(E) Major Improvemen t Required	Possible points	Ratings A - E	Points Awarded
7	Accuracy of layout	10	Correct measurement s; marked center points of holes; accurately cut parts		Need prompting to do correctly		Unable to layout	10		
8	Use of fasteners for component	25	Appropriate installation of fasteners for load, safety, cost		Needed assistance or prompting to install fasteners		Unable to install fasteners or incorrect fasteners used	25		
9	Use of tools	10	Appropriate operation of drills press, taps, wrenches, etc.		Needed assistance or prompting		Unable to use tools	10		
10	Assembly	25	Assembly was easily put together; holes appropriately located		had to alter to assemble; rework required		Was impossible- -could not be assembled	25		

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
L SPONSORED TAACCCT GRANT: TC23767	PAGE	9 of 11

US DOL SPONSORED TAACCCT GRANT: TC23767

PRIMARY DEVELOPERS:

Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

Fabrication and Assembly

	Safety	PTS	(A) Highly Proficient	(B) Competent	(C) Partially Competent/Developing	(D) Limited	(E) Major Improvement Required	Possible points	0	Points Awarded
11	Safe Work Practices	25	Used appropriate PPE; practiced common safety practices		Most safety practices used		Demonstrated unsafe working practices	25		
12	Safety Attitude	25	Work practices demonstrated safety consciousness in all procedures; looked out for safety of others		Most of the time worked safely and showed some concern for safety of others		Dangerous worker; did not look out for safety of others	25		
13	Machining safety	25	Guards used on drill press; secured; band sawpusher used		Had to be prompted		Dangerous worker; did not look out for safety of others	25		

	PRODUCT EVALUATION	PTS	(A) Highly Proficient	(B) Competent	(C) Partially Competent/Developing	(D) Limited	(E) Major Improvement Required	Possible points	-	Points Awarded
14	Safe product	10	Product was deburred so could be handled safely		Minor deburring problems; but overall safe		Ouch	10		
15	Durability, reliability and load appropriate	25	Appropriate materials, fasteners and design made the product durable for use in an industrial environment		Minor design issues could have improved the durability		Not at all durable	25		
16	Function	25	Product met the needs of the problem presented		Will basically work		Will not serve the needs of the problem	25		

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
L SPONSORED TAACCCT GRANT: TC23767	PAGE	10 of 11

US DOL SPONSORED TAACCCT GRANT: TC23767

ION	V 001
AGE	10 of 1

PRIMARY DEVELOPERS:

Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

Fabrication and Assembly

	WORK HABITS	PTS	(A) Highly Proficient	(B) Competent	(C) Partially Competent/Developing	(D) Limited	(E) Major Improvement Required	Possibl e points	Ratings A - E	Points Awarded
17	Work Attitude	15	Alert to finding and correcting problem		Honestly attempted to find and correct problems		Showed frustration in finding and correctly problem	15		
18	Work Procedure	25	Always followed standard procedures; demonstrated planning and organization skills in correcting the problem		Complied with standard procedures; Showed some plan and organization in working		Did not follow standard procedures; Disorganized and slipshod methods;	25		
19	Professionalism	20	Work showed pride in accomplishme nt		Tried hard and shows promise		Work lacks praiseworthy factors	20		
20	Self-confidence	15	Appeared comfortable and posed when performing tasks		Fairly self-confident; occasionally disconnected		Hesitant, timid, uncertainty	15		
21	Knowledge of job	25	Has an exceptionally thorough knowledge of the job		Has good knowledge but needed coaching		Has inadequate knowledge of job	25		

Total Points

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
SPONSORED TAACCCT GRANT: TC23767	PAGE	11 of 11

Mechapracticum Outline

Fabrication and Assembly

SAFETY DISCLAIMER:

M-SAMC educational resources are in no way meant to be a substitute for occupational safety and health standards. No guarantee is made to resource thoroughness, statutory or regulatory compliance, and related media may depict situations that are not in compliance with OSHA and other safety requirements. It is the responsibility of educators/employers and their students/employees, or anybody using our resources, to comply fully with all pertinent OSHA, and any other, rules and regulations in any jurisdiction in which they learn/work. M-SAMC will not be liable for any damages or other claims and demands arising out of the use of these educational resources. By using these resources, the user releases the Multi-State Advanced Manufacturing Consortium and participating educational institutions and their respective Boards, individual trustees, employees, contractors, and sub-contractors from any liability for injuries resulting from the use of the educational resources.

DOL DISCLAIMER:

This product was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

RELEVANCY REMINDER:

M-SAMC resources reflect a shared understanding of grant partners at the time of development. In keeping with our industry and college partner requirements, our products are continuously improved. Updated versions of our work can be found here: http://www.msamc.org/resources.html.

