

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
IS DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	1 of 9

PRIMARY DEVELOPERS: Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

Advanced PLC

Topic: Advanced PLC

Estimated completion time: 16 hours

Purpose:

The purpose of this Mechapracticum is for the participant to demonstrate their ability to operate the PLC as prescribed in this document.

Instructional Outcomes:

The participant will demonstrate the application of their skill and knowledge in the following topical areas:

- Adv. Plc
- PLC
- Electro-pneumatics
- Basic electricity
- Safety

Instructions to Students

In a steel mill, the ladles that carry the molten metal have to be re-lined with a type of fire brick on a 6 month basis. After re-lining the ladle the mortar securing the bricks has to be heated to cure.

You are going to create a basic PLC program and HMI screen to control and display this simple process. We are not controlling the Temperature process, just initiating a Temp Controller. Please refer to the attached Timing Diagram.

Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

Advanced PLC

There are 3 outputs: Close clamp, close Lid, and initiate the temperature controller.

The inputs are:

- SW 1 Initiate process
- SW 2 Clamp is closed
- SW 3 Lid is closed
- SW 4 Increment T2 (by 1/2 sec.) Note this can also be done through the HMI
- SW 5 Decrement T2 (by ½ sec.) Note this can also be done through the HMI
- SW 6 Reset alarm/function
- SW 7 Cycle complete from the Temperature controller.

The timing of the sequence will be provided by your evaluators/instructors.

It should be noted that T2 is a variable. It starts at 10 seconds but can be adjusted from 5 to 15 seconds through the HMI or through switches 4 & 5.

Once SW7 is closed, SW1 must be turned off and the circuit must be reset to initiate a second sequence. After this operation, T2 will always be reset to 10 sec.

T1 is always 3 seconds.

Under normal operation the T2 time is set on the HMI and then the system is initiated (SW 1). A Variable time on T2 allows for different size lids to be used for differing Ladle sizes. Incrementing and Decrementing is done in ½ second intervals.

PRIMARY DEVELOPERS: Glenn Wisniewski - Corporate Trainer, Henry Ford College Wes Bye - Mechatronics SME, Pontiac Coil

Mechapracticum Outline

Advanced PLC

Once the system is initiated:

- SW2 must be closed in three sec.
- Following SW2, SW-3 must be closed in a timeless that the displayed T2 on the HMI.
- T2 cannot be toggled to increase above 15 sec. or below 5 seconds.

Should any of these conditions not be met, the alarm goes on, all outputs go off, and the circuit has to be reset after turning off SW1. The alarm must be reset to initiate a new cycle. Sample HMI screens will be provided by your instructor or you will be responsible for the design depending on the school.

A second utility screen is offered for the operator to help them convert from Fahrenheit to Centigrade. The Fahrenheit input is adjustable from 0 degrees to 2500 degrees in 100 degree increments.

The Increment and Decrement logic in the program must be in a separate subroutine. The Fahrenheit to Centigrade conversion must be in its own subroutine.

The program must include sufficient rung comments and descriptors to be easily understood by the evaluator when viewing the programming terminal.

You are to initiate communications with the processor, design, enter, and debug the program and demonstrate the proper operation to the evaluator.

Additionally, you will have to demonstrate the ability to input a signal from an analog device and affect the ladder logic. This activity will vary by school and available equipment. Your instructor will provide this additional information.

Safetv

The student will demonstrate all safety practices learned previous instruction.

PRIMARY DEVELOPERS: Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

Advanced PLC

Instructions to Evaluator:

The standard Siemens Trainer found at OCC or HFCC will support this activity. The OCC/HFCC instructors can identify the model number that is purchased from Siemens.

1200 programming software should be used.

This defines all the equipment necessary to support this activity with the exception of a Potentiometer and power source to facilitate the analog input activity.

The original thought regarding the logic was to have a HMI adjustment of Time 2 or Manual switches to increment and decrement T_{2} . You could easily ask the students to forgo the Manual switches and to use the HMI only.

The HMI screen layouts will reflect your requirements. The original thought was to have a an Arrow up and down button(s) next to the Fahrenheit Display that would be used to enter the Fahrenheit (in 100 Degree increments) For advanced students, a rapid scroll could be added after depressing for 2 sec.

Most Plant prints that were evaluated prior to their involvement in MAT2 reflected standard ladder logic was in use. If you elect to add additional Language requirements for the subroutines, this is your option.

Program documentation is critical... If the operation of the program is not obvious from the screen, demand that the students continue to expand. This is a critical if they should ever have the opportunity to program at their plants.

You may also add some additional requirements to reflect advanced concepts that were developed. This instruction sheet is meant to define a minimum required skill.

Required Equipment and Materials:

N/A

	 NO	Asso	- we	-
	 -	N-S		
54	19	V	16	
		1.A.	d	
	5	0.0	0	

Rubrics.

Multi-State Advanced Manufacturing

RELEASE DATE	12/17/2014
VERSION	v 001

Consortium

PAGE 5 of 9

US DOL SPONSORED TAACCCT GRANT: TC23767

PRIMARY DEVELOPERS:

Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

πι	ibrics:						
	Skill Outcomes	PTS	(A) Highly Proficient	(B) Competent	(C) Partially Competent -Developing	(D) Limited	(E) Major Improvement Required
1	latora rot the	10	Student asked		Needed some		Unable to
T	Interpret the written	10					translate written
			clarifying		prompting to		problem into
	assignment and translated into		questions but needed no		identify program solution		
	Program		assistance to		Solution		program
	FIOgraffi		solve logic				
			requirements				
Α	Program and	25	Program and		Program and HMI		Program and
~	HMI functions	23	HMI functions		partially functions		HMI did not
	as desired		as required		partially randerens		function
							properly
В	T2 adjustable as	10	T2 fully		Student required		Student could
	required		adjustable		minor prompting		not solve the
			-				Incrementing
							and
							decrementing
							requirements
							without support
С	Alarm working	10	Alarm		Needed some		Student needed
	as required.		working as		prompting to select		SME to define
			required		the appropriate		the logic and the
					instructions		instructions to
							be used.
D	Demonstrated	10	Analog input		Needed some		Student needed
	proficiency in		functions		prompting by SME		SME to define
	utilizing the		properly, no				the logic and the
	analog input.		assistance				instructions to
			given be SME				be used.

	. WT	NO	Acres		and and
		-	M-S		1
5A			M		
~	-	1.	M	A	
		S		and a	

Multi-State
Advanced Manufacturing
Consortium

RELEASE DATE	12/17/2014
VERSION	v 001
PAGE	6 of 9

US DOL SPONSORED TAACCCT GRANT: TC23767

PRIMARY DEVELOPERS:

Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

E	Fahrenheit to Centigrade conversion functioning properly	10	Conversion software functions properly. No SME assistance required		Needed some prompting by SME		Student needed SME to define the logic and the instructions to be used.
F	PLC logic documentation	25	Evaluator did not require any further information from the student to understand the logic		Evaluator had to ask several questions of the student to understand the logic		Logic could only be understood if the student explained its operation
	Safety	PTS	(A) Highly Proficient	(B) Competent	(C) Partially Competent/Develo ping	(D) Limited	(E) Major Improvement Required
1	Safe Work Practices	25	Used appropriate		Most safety practices used		Demonstrated unsafe working
			PPE; practiced common safety practices				practices

 .we	NO	Road	- 14	(m)	
H		M-S		TYT	US

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
JS DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	7 of 9

PRIMARY DEVELOPERS:

Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

3	Electrical safety practices Tool Use	25 PTS	Used appropriate control energy and safety procedures (A) Highly Proficient	(B) Competent	(C) Partially Competent/Develop ing	(D) Limited	Dangerous worker around electrical (E) Major Improvement Required
1	Use of Diagnostic Tools (Programming terminal)	25	Correctly and efficiently use of diagnostic tools in an appropriate manner		Somewhat efficiently; mishandled one or more of the tools		Had to have assistance in using diagnostic functions of the terminal or DVM
	Work Habits	PTS	(A) Highly Proficient	(B) Competent	(C) Partially Competent/Develop ing	(D) Limited	(E) Major Improvement Required
1	Work Attitude	15	Alert to finding and correcting problem		Honestly attempted to find and correct problems		Showed frustration in finding and correctly problem
2	Work Procedure	25	Always followed standard procedures; demonstrated planning and organization skills in correcting the problem		Complied with standard procedures; Showed some plan and organization in working		Did not follow standard procedures; Disorganized and slipshod methods;

Multi-State Advanced Manufacturing	RELEASE DATE	12/17/2014
Consortium	VERSION	v 001
US DOL SPONSORED TAACCCT GRANT: TC23767	PAGE	8 of 9

PRIMARY DEVELOPERS:

Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

3	Professionalism	20	Work showed pride in accomplishme nt	Tried hard and shows promise	Work lacks praiseworthy factors
4	Self-confidence	15	Appeared comfortable and posed when performing tasks	Fairly self-confident; occasionally disconnected	Hesitant, timid, uncertainty
5	Knowledge of job	25	Has an exceptionally thorough knowledge of the job	Has good knowledge but needed coaching	Has inadequate knowledge of job

Multi-State
Advanced Manufacturing
Consortium

RELEASE DATE	12/17/2014		
VERSION	v 001		
PAGE	9 of 9		

US DOL SPONSORED TAACCCT GRANT: TC23767

PRIMARY DEVELOPERS: Glenn Wisniewski – Corporate Trainer, Henry Ford College Wes Bye – Mechatronics SME, Pontiac Coil

Mechapracticum Outline

Advanced PLC

SAFETY DISCLAIMER:

M-SAMC educational resources are in no way meant to be a substitute for occupational safety and health standards. No guarantee is made to resource thoroughness, statutory or regulatory compliance, and related media may depict situations that are not in compliance with OSHA and other safety requirements. It is the responsibility of educators/employers and their students/employees, or anybody using our resources, to comply fully with all pertinent OSHA, and any other, rules and regulations in any jurisdiction in which they learn/work. M-SAMC will not be liable for any damages or other claims and demands arising out of the use of these educational resources. By using these resources, the user releases the Multi-State Advanced Manufacturing Consortium and participating educational institutions and their respective Boards, individual trustees, employees, contractors, and sub-contractors from any liability for injuries resulting from the use of the educational resources.

DOL DISCLAIMER:

This product was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

RELEVANCY REMINDER:

M-SAMC resources reflect a shared understanding of grant partners at the time of development. In keeping with our industry and college partner requirements, our products are continuously improved. Updated versions of our work can be found here: http://www.msamc.org/resources.html.

