[image: C:\Users\karina.whetstine\Dropbox\TAACCCT - Davis\DOL\NISGTC Logo.jpg]

[image: Creative Commons License]
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
[bookmark: _GoBack]Authoring Organization: Bellevue College
Written by: Linda Rumans
Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)
Development was funded by the Department of Labor (DOL) Trade Adjustment Assistance Community College and Career Training (TAACCCT) Grant No. TC-22525-11-60-A-48; The National Information Security, Geospatial Technologies Consortium (NISGTC) is an entity of Collin College of Texas, Bellevue College of Washington, Bunker Hill Community College of Massachusetts, Del Mar College of Texas, Moraine Valley Community College of Illinois, Rio Salado College of Arizona, and Salt Lake Community College of Utah.
This workforce solution was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The solution was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties or assurances of any kind, express or implied, with respect to such information, including any information on linked sites, and including, but not limited to accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability or ownership.

Recursion
INTRODUCTION
In this module students will learn about a powerful software development technique called recursion. This technique is not specific to a particular programming language. Rather it is a style of programming that requires us to think in new ways about solving problems. Those familiar with mathematical induction may find that thought process useful when developing recursive solutions. This module will continue the course use of Microsoft’s .NET environment, C# and Visual Studio.
LESSON OBJECTIVES
By the end of this lesson, you will be able to:
1. Define recursion.
2. Generate examples of recursive and iterative solutions.
LEARNING SEQUENCE
	

	Required Reading
	Read the following:
· Module 2 from the course, Principles of Computing, available from Carnegie Mellon University’s Open Learning Initiative
 Visit Principles of Computing (Open + Free)
 (Click on “Enter Course” and then click on “Module 2”.)

	Resources
	View the following:
· The Function Stack (Recursion)
· Introduction to Recursion using C#	
· Stack Height (Recursion)

	Assignments
	Complete the following:
· Fibonacci Numbers

INSTRUCTION
Introduction to Recursion
What is Recursion?
Recursion is an approach to solving problems. When a problem is solved recursively, the solution includes a “smaller” or “simpler” version of the same problem. Further, recursion is a software development technique. When we use recursion as a software development technique, we write methods that call themselves either directly or indirectly.
Complete the following learning activities to recognize and use recursion.
Step 1: Read Module 2 from the course, Principles of Computing, available from Carnegie Mellon University’s Open Learning Initiative. This reading material may be found by visiting Principles of Computing (Open + Free). You will need to click on “Enter Course” and then click on “Module 2” to access the reading. Do not worry if you do not understand everything at first. Just try to discern the differences between iterative solutions and recursive solutions.

Step 2: View the following lectures:
The Function Stack (Recursion) (2:07)
In this lecture, you will learn how languages like C# handle variables and parameters when methods are called. It is important to understand the call stack (another name for the function stack) when working with recursion.
Introduction to Recursion in C# (6:59)	
In this lecture, you will learn how to write a recursive method using C#. Note the code development and try to identify both base and recursive cases.
Stack Height (Recursion) (2:53)
In this lecture, you will learn about the pitfalls of omitting the base case when developing a recursive method. That is to say, you will learn about “stack overflow”. Have you ever seen the “Stack Overflow” message in any programs you have written thus far? 	
PRACTICE
Complete the following activity, Creating a Factorial Calculation. This activity is for practice only. No points are awarded for its completion.
Creating a Factorial Calculation
1. Using Visual Studio and C#, recreate the recursive code you viewed in the “Introduction to Recursion in C#” video.

2. Place a break point on the call to the factorial method from within the factorial method.

3. Run your code and step through the code while viewing the call stack window.

a. You can find the call stack window by choosing Debug, Windows, Call Stack once you have reached your break point.

4. Experiment with placing break points at other places in your code and viewing the call stack.

5. Write another method that uses iteration (a loop) to calculate factorial.

6. Experiment with placing break points in your iterative method and viewing the call stack. How does the use of the call stack differ from the recursive method?

Move
Close
Print
b = 4 ft.
c = 13 inches
a = [image: square root of 300]cm = 17.32 cm
b = 24 yards
b = [image: square root of 140]= 11.83
[bookmark: summarizing]SUMMARY
Recursion Concepts
· Recursion is a problem solving technique in which a smaller or simpler version of the problem is used repeatedly.

· Thinking recursively is the key to programming with recursion and this can be a challenge.

· Recursion is also a software development technique in which a method calls itself.

· A recursive program must have a base case that is not recursive so that the recursion will eventually end.

· Each recursive call creates a new set of local variables and parameters on the call stack.

· Recursion can be an effective and elegant way to solve a problem. However, sometimes iterative solutions can be simpler.

· Sometimes recursion occurs indirectly as when a method calls another method which then calls the first method.

ASSIGNMENTS
1. [bookmark: assessing]Fibonacci Numbers

[image: Creative Commons License]This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Bellevue College
Written by: Linda Rumans
Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

image2.png

image3.gif

image4.gif

image1.jpeg

