[image: C:\Users\karina.whetstine\Dropbox\TAACCCT - Davis\DOL\NISGTC Logo.jpg]

[image: Creative Commons License]
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Moraine Valley Community College
Written by: Susan Sands
Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)
Development was funded by the Department of Labor (DOL) Trade Adjustment Assistance Community College and Career Training (TAACCCT) Grant No. TC-22525-11-60-A-48; The National Information Security, Geospatial Technologies Consortium (NISGTC) is an entity of Collin College of Texas, Bellevue College of Washington, Bunker Hill Community College of Massachusetts, Del Mar College of Texas, Moraine Valley Community College of Illinois, Rio Salado College of Arizona, and Salt Lake Community College of Utah.
This workforce solution was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The solution was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties or assurances of any kind, express or implied, with respect to such information, including any information on linked sites, and including, but not limited to accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability or ownership.

Lesson 5: Baseline and Secure Software Development
INTRODUCTION
To secure a system effectively, you need to take a structured approach. You must fully understand the intended function of the system. What applications are required? What processes and services are needed? Regardless of the type of software, there is a universal requirement that the software performs the desired functions, and performs them in the correct manner. Developers know that functional specifications must be met for the software to be satisfactory. As we depend more and more on computers driven by software, we will need systems to do the same—to not only function now, but to be protected from malfunction in the future. In this lesson you will learn about the importance of application and data security, and procedures required for host security.
LESSON OBJECTIVES 	
By the end of this lesson, you will be able to:
1. Explain the importance of application security.
2. Carry out appropriate procedures to establish host security.
3. Explain the importance of data security.
LEARNING SEQUENCE
	

	Required Reading
	Read the following:
· Online lesson material

	Resources
	View the following:
· None

	Assignments
	Complete the following:
· Secure Software Development Baselining Quiz
· Data Theft Lab
· Securing Data Using Encryption Software Lab

INSTRUCTION
Overview of Baselines
The process of establishing a system’s security state is called baselining. To harden a system, we will start with an examination of the system’s intended functions and capabilities to determine what processes and applications will be housed on the system. As a best practice, anything that is not required for operation should be removed or disabled on the system. Apply all of the appropriate patches, hotfixes, and settings to protect it.
Uniform baselines are critical in a large-scale environment, because maintaining separate configurations and security levels for hundreds of systems or more is far too costly. Additionally, similar systems can be configured with the same baseline to achieve the same level of security and protection.
Operating System and Network/Operating System Hardening
The process of securing and preparing a system for the production environment is called hardening. The operating system of a computer is the basic software that handles things such as input, output, display, memory management, and all the other tasks required to support the user environment and associated applications. A network operating system (NOS) is an operating system that includes additional functions and capabilities to assist in connecting computers and devices, such as printers, to a local area network (LAN).
Consider the following actions:
· Disabling unnecessary services
· Restricting permissions on files and directories
· Removing unnecessary software
· Applying patches
· Removing unnecessary users
· Applying password guidelines

[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Operating_System_and_Network.png]
Figure 1 Screenshot of Windows Operating System Services screen which includes a view of the name, description, status, startup type and log on as information.
Hardening Windows
It is important to be aware of how to address hardening the Windows operating system. Several specific suggestions are discussed are provided below:
1. The user account used day to day should not be a member of the Administrators local group.
2. Change the network type to Public.
· Network discovery disabled
· File and Printer Sharing disabled
3. Configure the Windows Firewall.
· Drop all inbound connections automatically so that no one will be able to access anything on the computer from the network
· Filter outgoing traffic and applications to protect personal files
4. Change the User Account Settings to the highest level.
5. Configure Data Execution Prevention (DEP) to monitor programs to make sure they use computer memory safely
· Go to system > advanced system settings > performance > settings > data execution prevention: Set to all programs (set exceptions)
6. Disable remote assistance and remote desktop connections
7. Disable sharing and the NetBios protocol to completely remove the option to share files
8. Disable unnecessary services:
· TCP/IP Netbios helper 		
· Server Service
· Computer Browser		
· Remote Registry
· HomeGroup Listener		
· HomeGroup Provider
See Figure 2 for an example of a User Account Control window which advises that Windows needs your permission to continue. You will need to select the Continue button to change computer settings. Remember that user account controls can be used to eliminate unauthorized changes to your computer.
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Hardening_Windows.jpg]
Figure 2 Windows Operating System Services User Account Control window prompting you to either continue or cancel with changing the computer settings.
Hardening Windows 2008 Server
Microsoft has a free hardening guide for the 2008 OS available from its Download Center.
· Network Access Protection (NAP) controls access to network resources based on a client computer’s identity and compliance with corporate governance policy. NAP allows network administrators to define granular levels of network access based on client identity, group membership, and the degree to which that client is compliant with corporate policies.
· Read-only domain controllers can be created and deployed in high-risk locations, but they can’t be modified to add new users, change access levels, and so on.

[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Hardening_Windows_2008_Server.jpg]
Figure 3 Screenshot of Windows OS Initial Configuration Tasks screen which reflects the tasks needed to complete in order to initially configure the server.
Hardening UNIX-or Linux-based Operating Systems
Most organizations do not use a UNIX or Linux system as a desktop alternative for users. In most cases, these machines will be servers with very specific functions. During the initial installation, software or other services may be installed by default to make the installation go smoothly for the average user. Since the defaults may be unnecessary to the function of the server, the software should be removed and the unnecessary services should be disabled.
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Hardening_UNIX.jpg]
 Figure 4 Service Configuration Window
Hardening Linux: Managing User Accounts
The root account has complete and total control over the system and should therefore be protected with an exceptionally strong password. Many administrators will configure their systems to prevent anyone from logging in directly as root. Instead they must log in with their own personal accounts and switch to the root account using the su command.
Adding user accounts can be done with the useradd command, and unwanted user accounts can be removed using the userdel command. Additionally you can manually edit /etc/passwd to add or remove user accounts.
User accounts can also be managed via a graphic user interface (GUI).
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Hardening_Linux_Managing_User_Accounts.jpg]
Figure 5 Screenshot of the User Manager screen reflecting the User Name, User ID, Primary Group, Full Name, Login Shell and Home Directory.
Hardening Linux: Firewall Configuration
Administrators may choose a security level, from high, medium, off, or a customized option that enables them to individually select which ports on which interfaces external users may connect to. In addition to the built-in firewall functions, administrators may also use TCP wrappers.
By specifying host and port combinations in /etc/hosts.allow, administrators can allow certain hosts to connect on certain ports. The firewall function and hosts.allow must work together if both functions are used on the same system. The connection must be allowed by both utilities or it will be dropped.
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Hardening_Linux_Firewall_Configuration.jpg]
Figure 6 Screenshot of the Firewall Configuration screen which allows you to define which services are trusted.
Hardening Mac OS X
In the Mac OS X 10.5 (Leopard) release, Apple included some new security-specific features to help protect its user base:
· Only processes that are explicitly granted access are allowed to access system resources such as networking, file systems, process execution, and so on.
· Any file downloaded with Safari, iChat, or Mail is automatically tagged with metadata, including the source URL, date and time of download, and so on. If the download was an archive (such as a zip file), the same metadata is tagged to any file extracted from the archive. Users are prompted with this information the first time they try to run or open the downloaded file.
· Leopard provides no execute stack protection. Essentially this means that certain portions of the stack have been marked as “data only” and the OS will not execute any instructions in regions marked as data only. This helps protect against bufferoverflow attacks.
· Leopard loads system libraries into random locations, making it harder for attackers to reference static system library locations in their exploit code.
· FileVault encrypts files with AES encryption. When this feature is enabled, everything in the user’s home directory is automatically encrypted.
· The new Apple Application firewall, allows users to restrict network access on both a per-application and a per-port basis.
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Hardening_Mac_OS_X.png]
Figure 7 Mac OS X 10.5: Screenshot of the Security window where you can allow all incoming connections, allow only essential services or set access for specific services and applications.
Hardening Mac OS X: File Permissions
Traditionally, the Mac OS was largely ignored by the hacker community. With the rise in the number of Macs on the market, Mac users should anticipate a sharp increase in unwanted attention and scrutiny from potential attackers.

[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Hardening_Mac_OS_X_File_Permissions.jpg]
Figure 8 Mac OS screenshot of the Ownership and Permissions window which allows you make necessary selections needed for security purposes.
Updates
Vendors typically follow a hierarchy for software updates. Three types of updates are listed below.
· Hotfix: The hotfix is usually a small software update designed to address a specific problem, such as a buffer overflow in an application that exposes the system to attacks. Hotfixes are typically developed in reaction to a discovered problem and are produced and then released rather quickly. Hotfixes typically address critical, security-related issues and should be applied to the affected application or operating system as soon as possible.
· Patch: Patches are usually applied as a more formal, larger software update that may address several software problems. Patches often contain enhancements or additional capabilities as well as fixes for known bugs and are usually developed over a longer period of time.
· Service Pack: A service pack is a large collection of patches and hotfixes rolled into a single package. Service packs are designed to bring a system up to the latest known, good level all at once, rather than requiring the user or system administrator to download dozens or hundreds of updates separately.
Network Hardening
The same logical approach to hardening a system can also be applied to hardening a network. Software updates and device configurations for each network component must be addressed. Ports support various network services. Network devices must be configured with very strict parameters to maintain network security.
· Software updates maintain current vendor patch levels for your infrastructure. The different vendors for the different software and hardware must be tracked and software and firmware for each device must be kept current.

· Device configuration involves limiting access, choosing good passwords, turning off unnecessary services, and changing SNMP community strings
Application Hardening
Application hardening secures an application against local and Internet-based attacks. Most users are much more diligent about keeping their operating systems updated with the latest patches, but applications should also be a concern. Patch management is a disciplined approach to the acquisition, testing, and implementation of patches.
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Securing_Applications.png]

1. Application Patches: Include hotfixes, patches, and upgrades.
2. Patch Management: Microsoft provides a free patch-management product at the Microsoft site called Windows Server Update Services (WSUS). Using the WSUS product, administrators can manage updates for any compatible Windows based system in their organization. The WSUS product can be configured to download patches automatically from Microsoft based on a variety of factors (such as OS, product family, criticality, and so on). When updates are downloaded, the administrator can determine whether or not to push out the patches and when to apply them to the systems in their environment. The WSUS product can also help administrators track patch status on their systems, which is a useful and necessary feature.
Patch management involves the notification of patches, continual scanning of systems patch status, selection of which patches to apply, pushing patches to systems, the ability to report a patch success or failure, and the ability to report patch status on any or all systems in the environment. See Figure 9.
[image: F14-16.jpg]
Figure 9 Screenshot of Microsoft Window Server Update Services-Microsoft Internet Explorer: The Proxy Server can be configured to download patches automatically from Microsoft based on a variety of factors (OS, product family, criticality, and so on). When updates are downloaded, the administrator determines whether or not to push out the patches and when to apply them to the systems.
Group Policies
Group policies allow for centralized management and configuration of computers and remote users in an Active Directory environment. Policy settings are stored in a group policy object (GPO) and are referenced internally by the OS using a globally unique identifier (GUID).
Group Policy Capabilities:
· Network location awareness can apply different GPOs as needed.
· Mobile users who connect through VPNs can receive a GPO update in the background after connecting to the corporate network via VPN.
· Power management can be managed.
· Administrators can restrict user access to USB drives, CD-RW drives, DVD-RW drives, and other removable media.
· Users can be assigned to various printers based on their location. As mobile users move, their printer locations can be updated to the closest local printer.
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Group_Policies.jpg]
Figure 10 Screenshot of Windows OS Group Policy Object Editor screen which allows you to select local computer policies.
Security Templates
A security template is simply a collection of security settings that can be applied to a system. Within the Windows OS, security templates can contain hundreds of settings that control or modify system settings such as password length, auditing of user actions, or restrictions on network access. Security templates can be standalone files that are applied manually to each system, but they can also be part of a group policy, allowing common security settings to be applied to systems on a much wider scale.
Here are a collection of security settings that can be applied to a system:
· Account policies are settings for user accounts, such as password length, complexity requirements, and account lockouts.
· Event log settings apply to the three main audit logs within Windows (Application, System, and Security), such as log file size and retention of older entries.
· File permissions apply to files and folders, such as permission inheritance and locking permissions.
· Registry permissions control who can access the Registry and how it can be accessed.
· System services are settings for services that run on the system, such as startup mode and whether or not users can stop/start a service.
· User rights control what a user can and cannot do on the system.
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Security_Templates.png]
Figure 11 Screenshot of Windows OS Console 1 Window showing the security templates available.

Secure Software Development
Regardless of the type of software, there is a universal requirement that the software performs the desired functions, and performs them in the correct manner. Developers know that functional specifications must be met for the software to be satisfactory.
As we depend more and more on computers driven by software, we will need systems to do the same—to not only function now, but to be protected from malfunction in the future.
Software Engineering
Software engineering fits as many requirements as possible into the project management schedule timeline. But with analysts and developers working with abbreviated timelines to get as many functional elements correct as possible, the issue of nonfunctional requirements often gets pushed to the back burner, or neglected entirely.
Getting security right in a program is essential if we are going to rely on a program. Security is best if built into the foundation.
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Software_Engineering.png]
Figure 12 Security built as a foundation complete with the systematic development of software that fulfills a variety of functions.
Secure Development Lifecycle (SDL)
Secure coding has not been high on the list for most organizations. The rise in issues of malware and hackers has raised awareness of this issue significantly. First and foremost, recognition of the need to include secure coding principles into the development process is a common element despite the framework being used. For more information read What is the Security Development Lifecycle?
The Software Assurance Forum for Excellence in Code (SAFECode) is an organization formed from some of the leading software development firms with the objective of advancing software assurance through better development methods. Visit SAFECode. Regardless of the software development process used, the first step down the path to secure coding is to apply secure coding principles.
SDL accounts for security in each of its four major phases: requirements phase, design phase, coding phase, and testing phase.

[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Requirements_Phase.png]
Requirements Phase: This phase should define the specific security requirements if they are to be designed into the project. Secure coding does not refer to adding security functionality into a piece of software. The objective of the secure coding process is to properly implement all of the requirements so that the resultant software performs as advertised.
The requirements process is a key component of security in software development. Security-related items enumerated during the requirements process are visible throughout the rest of the software development process. They can be built into the systems and subsystems, addressed during coding, and tested. For the subsequent steps to be effective, the security requirements need to be both specific and positive.
During the requirements phase, there are numerous security issues that need to be considered. The cost of adding security later on in the development process rises exponentially as the process goes forward.
· Analysis of security and privacy risk
· Authentication and password management
· Audit logging and analysis
· Authorization and role management
· Data validation and sanitization
· Cryptography and key management
· Code integrity and validation testing
· Network and data security
· Ongoing education and awareness
· Team staffing requirements
· Third-party component analysis

[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Design_Phase.png]
Design Phase: Coding without designing first is like building a house without using plans. This might work fine on small projects, but as the scope grows, so do complexity and the opportunity for failure. Designing a software project is a multifaceted process.
There are two secure coding principles that can be applied at design time that can have large influence on the code quality.
1. The first of these is the concept of minimizing attack surface area. Reducing the avenues of attack available to a hacker can have obvious benefits to the software. Minimizing attack surface area is a concept that tends to run counter to the way software has been designed—most designs come as a result of incremental accumulation, adding features and functions without regard to maintainability.
2. Threat modeling is a communication tool designed to communicate to everyone on the development team the threats and dangers facing the code. Define the scope by communicating what is in scope and out of scope with respect to the threat modeling effort. This includes both attacks and software components.
Enumerate assets by listing all of the component parts of the software being examined.
1. Decompose assets by breaking apart the software into small subsystems composed of inputs and outputs to simplify data flow analysis and to capture internal entry points.
2. Enumerate threats by listing all the threats to the software.
3. Classify the threats by their mode of operation.
4. Associate threats to assets by connecting specific threats and modes to specific software subsystems.
5. Score each specific threat–asset pair and then rank them from most dangerous to least dangerous.
6. Create threat trees using a graphical representation of the required elements for an attack vector.
7. Score the mitigation efforts associated with each attack vector.
For more details on threat modeling, see SDL Threat Modeling Tool.
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Coding_Phase.png]
Coding Phase: The point at which the design is implemented is the coding phase in the software development process. There are two types of errors: the failure to include desired functionality, and the inclusion of undesired behavior in the code. Testing for the first type of error is relatively easy if the requirements are enumerated in a previous phase of the process.
Testing for the inclusion of undesired behavior is significantly more difficult. Enumerations of known software weaknesses and vulnerabilities have been compiled and published as the Common Weakness Enumeration (CWE) and Common Vulnerabilities and Exposures (CVE) by the Mitre Corporation. The CVE and CWE are vendor- and language-neutral methods of describing errors. These enumerations allow a common vocabulary for communication about weaknesses and vulnerabilities. This common vocabulary has also led to the development of automated tools to manage the tracking of these issues.
Currently, the CWE describes more than 750 different weaknesses, far too many for developer memory and direct knowledge.
Major Programming Errors
Mitre has collaborated with SANS to develop the CWE/SANS Top 25 Most Dangerous Programming Errors list. One of the ideas behind the Top 25 list is that it can be updated periodically as the threat landscape changes. Explore the current listing: 2011 CWE/SANS Top 25 Most Dangerous Software Errors.
The current Top 25 list is divided into three high-level categories: Insecure Interactions Between Components, Risky Resource Management, and Porous Defenses. The Top 25 list covers a wide range of programs, from software application programs to web applications, and across a wide range of programming skill levels.
Buffer Overflows
The CERT/CC at Carnegie Mellon University estimates that nearly half of all exploits of computer programs stem historically from some form of buffer overflow. The generic classification of buffer overflows includes many variants, such as static buffer overruns, indexing errors, format string bugs, Unicode and ANSI buffer size mismatches, and heap overruns.
The first line of defense is to write solid code. Regardless of the language used, or the source of outside input, prudent programming practice is to treat all input from outside a function as hostile. Validate all inputs as if they were hostile and attempt to force a buffer overflow. With the amount of attention paid to this type of vulnerability, its presence is significantly reduced in newly discovered vulnerabilities.
Software Vulnerabilities
In today’s computing environment, a wide range of character sets is used. Unicode allows multi-language support. Character code sets allow multi-language capability. Various encoding schemes, such as hex encoding are supported to allow diverse inputs. The net result of all these input methods is that there are numerous ways to create the same input to a program.
Canonicalization is the process by which application programs manipulate strings to a base form, creating a foundational representation of the input. Canonicalization errors arise from the fact that inputs to a web application may be processed by multiple applications, such as web server, application server, and database server, each with its own parsers to resolve appropriate canonicalization issues.
Injections
Use of input to a function without validation has already been shown to be risky behavior. Another issue with un-validated input is the case of code injection. Rather than the input being appropriate for the function, this code injection changes the function in an unintended way. An SQL injection attack is a form of code injection aimed at any Structured Query Language (SQL)–based database.
Testing for SQL Injection Vulnerability
There are two main steps associated with testing for SQL injection vulnerability.
1. You need to confirm that the system is at all vulnerable.
2. Use the error message information to attempt to perform an actual exploit against the database.
[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Testing_for_SQL_Injection_Vulnerability.png]
Figure 13 Graphic representation reflecting testing for SQL Injection vulnerability with the following results: Poor Server Configuration Authentication 30%, Malware 10%, SQL Injection with Malware 20%, SQL Injection 40%.
Least Privilege
Whenever the software accesses a file, a system component, or another program, the issue of appropriate access control needs to be addressed. And although the simple practice of just giving everything root or administrative access may solve this immediate problem, it creates much bigger security issues that will be much less apparent in the future.
1. The developer must understand what privileges are required specifically for an application to execute and access all its required resources
2. Determine what needs to be accessed and what the appropriate level of permission is, then use that level in design and implementation.

[image: Z:\Media\Moraine Valley\LAN_153_Security Essentials\images\L11_Testing_Phase.png]

Testing Phase: The testing phase is the last opportunity to determine that the software performs properly before the end user experiences problems. Errors found in testing are late in the development process, but at least they are still learned about internally, before the product is released. Testing can occur at each level of development: module, subsystem, system, and completed application. The sooner errors are discovered and corrected, the lower the cost and the lesser the impact will be to project schedules. This makes testing an essential step in the process of developing good programs.

One of the most powerful tools that can be used in testing is fuzzing, the systematic application of a series of malformed inputs to test how the program responds. Fuzzing has been used by hackers for years to find potentially exploitable buffer overflows, without any specific knowledge of the coding. A tester can use a fuzzing framework to automate numerous input sequences.

Each one of the testing methodologies listed below is used for different objectives. The difference among white- grey- and black-box testing is the amount of access to the design and code elements. Penetration testing is designed to test configuration, security controls and common defenses. Penetration testing can explore whether or not specific security controls can be bypassed.
White-box: test team has access to the design and coding elements
Grey-box: test team has more information than in Black-box testing, but not as much as in White-box testing
Black-box: test team does not have access to design and coding elements
Penetration: designed to test configuration, security controls, and common defenses
SUMMARY
In this lesson you learned about the importance of securing a system. It is important to know what type of applications will be required and which products and or services are needed. Becoming aware of what the functional specifications are for software to be satisfactory it will help to be informed of the means needed to implement procedures needed to establish host security.
ASSIGNMENTS

1. Secure Software Development Baselining Quiz
2. Data Theft Lab
3. Securing Data Using Encryption Software Lab

[bookmark: _GoBack][image: Creative Commons License]This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Moraine Valley Community College
Written by: Susan Sands
Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

image2.png

image3.png

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.png

image10.jpeg

image11.png

image12.jpeg

image13.jpeg

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image1.jpeg

