Sub-Title |
Graphic User Interface… As Diagnostic Tool |
Content
|
Building automation is the goal that a Building Management System or a (more recent terminology) Building Automation System (BAS) attempts to achieve. Both are examples of a distributed control system - the computer networking of electronic devices designed to monitor and control the mechanical, security, fire and flood safety, lighting (especially emergency lighting), HVAC and humidity control and ventilation systems in a building.[1] BAS core functionality keeps building climate within a specified range, lights rooms based on an occupancy schedule (in the absence of overt switches to the contrary), monitors performance and device failures in all systems, provides malfunction alarms (via typically email and/or text notifications) to building engineering/maintenance staff and contractors. BAS reduce building energy and maintenance costs compared to a non-controlled building. Typically they are financed through energy and insurance savings, and other savings associated with pre-emptive maintenance and quick detection of issues. A building controlled by a BAS is often referred to as an intelligent building, "smart building", or (if a residence) a "smart home". Commercial and industrial buildings have historically relied on robust proven protocols (like BACnet) while proprietary and poorly integrated purpose-specific protocols (like X-10 or those from Honeywell, Siemens or other major manufacturers of smart thermostats, etc.)) were used in homes. Recent IEEE standards (notably IEEE 802.15.4, IEEE 1901 and IEEE 1905.1, IEEE 802.21, IEEE 802.11ac, IEEE 802.3at) and consortia efforts like nVoy (which verifies IEEE 1905.1 compliance) have provided a standards-based foundation for heterogeneous networking of many devices on many physical networks for diverse purposes, and quality of service and failover guarantees appropriate to support human health and safety. Accordingly commercial, industrial, military and other institutional users now use systems that differ from home systems mostly in scale. See home automation for more on entry level systems, nVoy, 1905.1, and the major proprietary vendors who implement or resist this trend to standards integration. Almost all multi-story green buildings are designed to accommodate a BAS for the energy, air and water conservation characteristics. Electrical device demand response is a typical function of a BAS, as is the more sophisticated ventilation and humidity monitoring required of "tight" insulated buildings. Most green buildings also use as many low-power DC devices as possible, typically integrated with power over Ethernet wiring, so by definition always accessible to a BAS through the Ethernet connectivity. Even a passivhaus design intended to consume no net energy whatsoever will typically require a BAS to manage heat capture, shading and venting, and scheduling device use |
Video |
Building An Open Source Home Automation System http://www.youtube.com/watch?v=Ubql6KH70dI
|
Content |
Room automation[edit]Room automation is a subset of building automation and with a similar purpose, it is the consolidation of one or more systems under centralized control, though in this case in one room. The most common example of room automation is corporate boardroom, presentation suites, and lecture halls, where the operation of the large number of devices that define the room function (such as videoconferencing equipment, video projectors, lighting control systems, public address systems etc.) would make manual operation of the room very complex. It is common for room automation systems to employ a touchscreen as the primary way of controlling each operation. Domotronics[edit]Domotronics Dom-o-tronics “Domus” (Latin for house) -o- “tronics” (Electronics) deals with the interdisciplinary interaction and intelligent networking of building, energy and communications technology in modern especially larger buildings with complex requirements. The aim of the Domotronics is to create buildings, which guarantee optimal comfort, provide a healthy environment, integrate numerous services such as security, communication, HVAC and assistance systems and respond to the occupants and environment through specific sensors for light and heat etc. and automated controls. Especially suited to large buildings where passive controls may be inadequate or impractical they have also become popular in modern “luxury” houses. |
Attributions |
Image and content courtesy of Whole Building Design Guide – National Institute of Building Sciences; and Additional content by Wikipedia – The Free Internet Encyclopedia |