[image: C:\Users\karina.whetstine\Dropbox\TAACCCT - Davis\DOL\NISGTC Logo.jpg]
[image: Creative Commons License]
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Bunker Hill Community College
Written by: Original author: Daniel Downs; Edited version: Susan Sands
Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)
Development was funded by the Department of Labor (DOL) Trade Adjustment Assistance Community College and Career Training (TAACCCT) Grant No. TC-22525-11-60-A-48; The National Information Security, Geospatial Technologies Consortium (NISGTC) is an entity of Collin College of Texas, Bellevue College of Washington, Bunker Hill Community College of Massachusetts, Del Mar College of Texas, Moraine Valley Community College of Illinois, Rio Salado College of Arizona, and Salt Lake Community College of Utah.
This workforce solution was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The solution was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties or assurances of any kind, express or implied, with respect to such information, including any information on linked sites, and including, but not limited to accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability or ownership.

Lesson 3: List Menus
INTRODUCTION
This lesson expands the developer’s knowledge of Java by discussing how to integrate the List Menu into the application. Topics include: creation of the list menu, arrangement of the items and corresponding Java files within the code, how to create new activities with a variety of intents, and how to edit the Android Manifest to support these new activities. The videos in this lesson support these components and provide an opportunity to edit and create code for the application.
LESSON OBJECTIVES
By the end of this lesson, the student will be able to:
1. Create an app using a List Menu.
2. Demonstrate the use of ListView in a user interface.
3. Identify activities within the Activity Lifecycle.
4. Explain the purpose of Fragments.
5. Explain the purpose of intents in Java code.
6. Explain the benefit of using overrides in Java.
LEARNING SEQUENCE
	

	Required Reading
	Read the following:
· Online Lesson Material

	Resources
	View the following:
· Java for Android Lesson 6 Part 1 (12:36)
· Java For Android Lesson 6 Part 2 (13:45)
· Android Application Development Tutorial – 16 – Activity Life Cycle (5:52)
· Android Application Development Tutorial – 11 – The Fragment Class Part a (11:24)
· Android Application Development Tutorial – 12 – The Fragment Class Part b (16:37)
Other Resources:
· Sample Code for Java for Android Lesson 6 Parts 1 and 2
· Java @override Annotations-What does it mean?
· Managing the Activity Lifecycle
· Android Fragments

	Assignments
	Complete the following:
· Managing the Activity Lifecycle Lessons
· Lab: Android Activity Cycle
· Quiz

INSTRUCTION
List Menus
A list menu provides a list of items that a user can choose from. A ListActivity is used to create the list of items on the menu of the application. Watch the video, Java for Android Lesson 6 Part 1 (12:36), which demonstrates how to create a list menu. The Sample Code is available for download to follow along with the tutorial. The video begins by adding a new Java class named Menu. Remember, class names always begin with an upper case letter. The video then discusses the code found in new class file.
[image:]	Comment by susands: Video Link:

http://youtu.be/-WTjRnic3B8?list=UU1DnWfnN37vc9GqUvrfoxgw

Embed code:

<iframe width="560" height="315" src="https://www.youtube.com/embed/-WTjRnic3B8?list=UU1DnWfnN37vc9GqUvrfoxgw" frameborder="0" allowfullscreen></iframe>
Create a new Java class named Menu. Edit the Menu.java file by typing in extends ListActivity as shown below in Figure 1.
[image:]
Figure 1: Editing the Menu.java file
The indication in Figure 1 means that the developer needs to import the ListActivity class.
[image:]
Figure 2: Importing the ListActivity class
The new class, Menu, now has all of the variables and methods defined in the ListActivity class.
Refer to Figure 3 showing the code from the Menu.java file. The @Override means that the base class method is being overridden. Its use will also protect the developer from unknown misspellings in a method name. Read Java @override Annotations-What does it mean? for an explanation with examples.
Watch the video, Java For Android Lesson 6 Part 2 (13:45) for a discussion on the different classes with the ListActivity. Learn how to type out the intents to show the menu of list options in the layout. Additional editing of the Android Manifest will be done to support the new activities in the project.

[image:]	Comment by susands:

Video Link:

http://youtu.be/nyY6l_QPGBU?list=UU1DnWfnN37vc9GqUvrfoxgw

Embed Code:
<iframe width="560" height="315" src="https://www.youtube.com/embed/nyY6l_QPGBU?list=UU1DnWfnN37vc9GqUvrfoxgw" frameborder="0" allowfullscreen></iframe>

The completed Menu.java file is shown in Figure 3.
package com.example.project1;
import android.app.ListActivity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class Menu extends ListActivity {

	String classes[] = {"MainActivity", "example1", "example2", "example3"};
	
	@Override
	protected void onCreate(Bundle savedInstanceState) {
		// TODO Auto-generated method stub
		super.onCreate(savedInstanceState);
		setListAdapter(new ArrayAdapter<String>(Menu.this, android.R.layout.simple_list_item_1));
	}

	@Override
	protected void onListItemClick(ListView l, View v, int position, long id) {
		// TODO Auto-generated method stub
		super.onListItemClick(l, v, position, id);
		String menu = classes[position];
		try{
			Class ourClass = Class.forName("com.example.project1." + menu);
			Intent ourIntent = new Intent(Menu.this, ourClass);
			startActivity(ourIntent);
		}catch (ClassNotFoundException e){
			e.printStackTrace();
		}
	}
}

Figure 3: New Java class named Menu
The list menu structure is complete, but there are still several new Java classes that need to be created to complete the project. These will be covered in the next lesson which will be CIT527AC – Lesson 1.
The Activity Lifecycle
The main activity is seen first when an app is launched. Each Activity has a life cycle which consists of the actions from beginning to end. Actions provide a way for users to interact with the app. An activity begins its life in the Activity life cycle with the onCreate() method which will initialize the user interface with the XML layout and set up all the resources required to perform the Activity.
There is also an onDestroy() method which ends an activity. The onDestroy() method releases any resources used and frees up memory on the mobile device.
Consider the following example—a user is playing a game and a phone call comes in. To receive the phone call, the game app must be terminated or paused so that enough memory is available to respond to the incoming call. Review the following table for methods that are available to handle life cycle actions.
Life Cycle Activity Methods
	Method
	Purpose

	onRestart()
	Called to begin an Activity that has been stopped

	onResume()
	Called when the user begins interacting with the Activity

	onPause()
	Called when the user is leaving an Activity

	onStop()
	Called to hide an Activity

	onStart()
	Called to make a hidden Activity visible again

Think of Activities as a stack of papers. When an Activity is launched using the onCreate() method, that Activity becomes the top sheet of paper on the stack. The methods shown in Table 1 change the order of the papers (i.e., the Activities) on the stack.
In order to publish an app, the app must cooperate with all of the other apps on the device. View the video, Android Application Development Tutorial – 16 – Activity Life Cycle (5:52) which demonstrates the addition of the onPause () method.
[image:]	Comment by susands:
Video Link:
http://youtu.be/-G91Hp3t6sg

Embed code:

<iframe width="560" height="315" src="//www.youtube.com/embed/-G91Hp3t6sg" frameborder="0" allowfullscreen></iframe>
Read through Managing the Activity Lifecycle and complete the four lessons. Detailed instructions are provided below.
Managing the Activity Lifecycle
In this exercise, you will use lifecycle callback methods to ensure that an app’s activities do what the user expects so that the activities do not end up using valuable system resources. Browse to http://developer.android.com/training/basics/activity-lifecycle/index.html.
This exercise is comprised of four lessons:
1. Starting an Activity
2. Pausing and Resuming an Activity
3. Stopping and Restarting an Activity
4. Recreating an Activity

Download the project’s zip file. To import a project zip file into Eclipse:
1. Select File > Import from the menu bar to open the Import wizard.
2. Select General > Archive File. Click Next.
3. Click the Browse button to select the .zip file.
4. Click Select All.
5. Select the folder that will be the import destination and click Finish as shown in Figure 4.
[image:]
Figure 4: Importing an Archive file into Eclipse
Submit the following for grading:
· One screen shot of the imported project
· One screen shot for each of the four lessons
Fragments
With the growth of Android devices going beyond smartphones, fragments were added to the Android SDK to help take advantage of the larger screens on other devices. Incorporating fragment components into the user interface design allows a developer to write one application that can be tweaked for different screen characteristics rather than writing separate applications for all of the different devices. The benefit here is that application testing, publication, and package management are much less cumbersome.
When developing Android apps, one Activity corresponds to one screen of an app. When the devices with larger screens became more popular, a developer had more room on these screens. To compensate for the extra screen space, a developer had to implement separate Activity classes to handle the additional functionality. Fragments help to alleviate this issue by encapsulating screen functionality into reusable components that can be used within Activity classes. Watch the video, Android Application Development Tutorial – 11 – The Fragment Class Part a (11:24), for an in-depth discussion of the fragment class along with an example of its use.
[bookmark: _GoBack][image:]	Comment by susands:
Video Link:

http://youtu.be/sWlrw6weqj4

Embed code:

<iframe width="560" height="315" src="https://www.youtube.com/embed/sWlrw6weqj4" frameborder="0" allowfullscreen></iframe>
There are two ways to add fragments. The first is to declare the fragment statically in the Activity’s layout file, as shown in the first video. The second way is to add it programmatically using the fragment manager. The video, Android Application Development Tutorial – 12 – The Fragment Class Part b (16:37) discusses both ways and provides example code.
[image:]	Comment by susands:
Video Link:

http://youtu.be/knW0Es6D10k

Embed code:

<iframe width="560" height="315" src="https://www.youtube.com/embed/knW0Es6D10k" frameborder="0" allowfullscreen></iframe>

Part of the code used in the video can be found on the Android developer website. Review the Example which uses two fragments to create a two-pane layout by visiting the Fragments page and scrolling down.
Android Fragments provide some additional information on the stages of the Fragment Life Cycle which is somewhat similar to the Activity Life Cycle discussed earlier in this lesson. The example code uses two fragments. One fragment is used when the device is in landscape mode, and the other is used for portrait mode.
SUMMARY
This lesson introduced the list menu and discussed how the menu will connect the other Java files created to this point. As components get added to an application, new activities are being generated which are part of the “life- cycle” of the application. The benefits of using fragments were discussed. Fragments package screen functionality into reusable components that can be used within Activity classes and are useful for devices that offer a larger screen size.
ASSIGNMENTS
Note: Assignment 1, Managing the Activity Lifecycle, details were provided within the lesson.
1. Managing the Activity Lifecycle Lessons
2. Lab: Android Activity Cycle
3. Quiz
[image: Creative Commons License]This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Bunker Hill Community College
Written by: Original author: Daniel Downs; Edited version: Susan Sands
Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image1.jpeg

image2.png

