[image: C:\Users\karina.whetstine\Dropbox\TAACCCT - Davis\DOL\NISGTC Logo.jpg]
[image: Creative Commons License]
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Bunker Hill Community College
Written by: Original author: Daniel Downs; Edited version: Susan Sands
Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)
Development was funded by the Department of Labor (DOL) Trade Adjustment Assistance Community College and Career Training (TAACCCT) Grant No. TC-22525-11-60-A-48; The National Information Security, Geospatial Technologies Consortium (NISGTC) is an entity of Collin College of Texas, Bellevue College of Washington, Bunker Hill Community College of Massachusetts, Del Mar College of Texas, Moraine Valley Community College of Illinois, Rio Salado College of Arizona, and Salt Lake Community College of Utah.
This workforce solution was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The solution was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties or assurances of any kind, express or implied, with respect to such information, including any information on linked sites, and including, but not limited to accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability or ownership.

Lesson 1: Resources
INTRODUCTION
To customize the look of an app, it is important to add customized resources such as launch images or icon images. This lesson discusses how to add these resources and use them in a project. This lesson will take developers through the steps required to add a Java class to their project. An intent will be used to start another activity, adding another screen to the app.
LESSON OBJECTIVES
By the end of this lesson, the student will be able to:
1. Add resources such as image files to a project.
2. Create custom icons.
3. Add a Java class to a project.
4. Identify the purpose of intents in Java code.
5. Demonstrate the use of an intent to start an activity.
LEARNING SEQUENCE
	

	Required Reading
	Read the following:
· Online Lesson Material

	Resources
	View the following:
· Android Application Development Tutorial 11 – Adding Resources and Setting Background (5:38)
· Android Application Development Tutorial – 12 – Setting up an Activity Using SetContentView (5:29)
· Android Application Development Tutorial – 13 – Introduction to the Android Manifest (4:07)
· Android Application Development Tutorial – 14 – The Framework of a Thread (5:42)
· Android Application Tutorial – 15 – How to Start a New Activity via Intent (6:02)
 Other Resources:
· Android Asset Studio
· Threads

	Assignments
	Complete the following:
· Lab: Android Manifest
· Quiz

INSTRUCTION
Adding Resources
Resources that can be used in an app include graphics, audio files, styles, themes and other data used by the app. Resources are accessed programmatically instead of being hard-coded into the app. Storing application resources in one place makes app development more organized, makes an app easier to localize for different languages, and makes it easier to develop for different devices.
Resource directories are created in Eclipse when a project is created. Expanding the res (resource) folder in Eclipse reveals several sub-folders. Recall that the strings.xml file exists in the values directory and stores string values used in the app. There are also several drawable folders located within res. Each drawable folder has a different resolution associated with it. For example, the drawable-hdpi folder will contain a graphic for an Android device that has a high-density screen. This allows a developer to have images available for different Android devices based on its resolution. Finally, there is a menu directory as shown in Figure 1.
[image:]
Figure 1: The resource folder within Eclipse
When a project is created in Eclipse, a default icon image named ic_launcher.png will be found in each folder as seen above in Figure 1. It is standard practice to start the filename of the icon image with the letters ic.
Adding Image Files
To add images into the res/drawable-hdpi folder:
1. Make sure that Eclipse is open. In the Package Explorer, expand res/drawable-hdpi.
2. Open the folder containing the graphic files to be used in the app.
3. Drag the graphic files to the drawable-hdpi folder until a plus sign pointer appears.
4. Click the Save All button on the Standard toolbar to save.
All graphics should be saved as a .png (portable network graphics) and the filename should be all lowercase. Resource files can be added through Eclipse or through Windows Explorer, for example.
Icons
By default, Android uses a standard Android icon as the graphic to represent an app on the device’s home screen. Figure 2 shows the Calculations app from previous lessons (see CIT527AA) and its default icon on the device. If an app is to be published to Google Play, it should have a custom graphic which properly represents the contents of the app. Launcher icons can also be used to provide the first impression for the app.
[image:]
Figure 2: Emulator app screen showing the default Android icon for Calculations
Google Play requires a 512 x 512 pixel, high-resolution application icon that is displayed on the Google Play site.
A tool called Android Asset Studio is available to generate icons for an app from existing images, clipart, or text.
Notification status icons are very similar in behavior to a launcher icon and need to be different sizes. These icons can also be created in Android Asset Studio.
Raw Files
An app can also use audio files and video files which are referred to as raw files. A raw sub-folder is not created in the res folder by default, so a developer would need to add this subfolder.
Adding a Splash Screen
Watch the video, Android Application Development Tutorial 11 – Adding Resources and Setting Background (5:38) to learn how to add sound and a splash screen activity to an app.
[image:]	Comment by susands: Video Link:
http://youtu.be/IHg_0HJ5iQo?list=PL2F07DBCDCC01493A

Video embed:

<iframe width="560" height="315" src="//www.youtube.com/embed/IHg_0HJ5iQo?list=PL2F07DBCDCC01493A" frameborder="0" allowfullscreen></iframe>
To add a new file to the project for the splash screen:
1. Right-click on the Layouts folder.
2. Select New > Other.
3. Select Android XML Layout File and click Next.
[image:]
Figure 3: Adding an Android XML Layout File to the project
4. Name the file (including the .xml extension). In this example, use the Linear Layout. Click Finish.
[image:]
Figure 4: Name the file
5. Edit the splash.xml file as shown in Figure 5 to use an image file for the background. Notice that the file extension is NOT referenced in the android:background statement.
Figure 5: The splash.xml file
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@drawable/adev" >

</LinearLayout>

Although Activities are covered a little more in-depth in Lesson 3, the next video, Android Application Development Tutorial – 12 – Setting up an Activity Using SetContentView (5:29), adds a Java class to have the splash screen open upon launch of the app.

[image:]	Comment by susands: Video Link:
http://youtu.be/H92G3CpSQf4?list=PL2F07DBCDCC01493A

Embed Code:
<iframe width="560" height="315" src="//www.youtube.com/embed/H92G3CpSQf4?list=PL2F07DBCDCC01493A" frameborder="0" allowfullscreen></iframe>

To add a Java class:
1. Within the src folder, right click on the package and select New > Class.
2. Begin the class name with an uppercase letter according to Java programming best practices. In this example, the class is named Splash.
[image:]Class Name: Type Splash

Figure 6: Adding a Java Class
3. Since this is to be an activity, the text extends Activity must be added.

[image:]
Figure 7: Viewing the new Java Class
4. Notice the indication circled in Figure 7. Right-click on “Activity”. Double click on the first option in the right-click menu, Import ‘Activity’. Since the activity is being extended, the methods from that Activity class will now be available for use.
[image:]Click to Import

Figure 8: Popup menu to import Activity
5. Make sure that the cursor is below the public class line, but above the curly brace. Right-click and select Source > Override Implement Method.
The window displays the Activity class which has been extended with all of the available methods.
[image:]
Figure 9: Available Activity methods
6. Select the method called onCreate(Bundle) as shown in Figure 9 to set up the Activity. The result is shown in Figure 10.
Figure 10: Splash.java code
package com.susands.calculations;

import android.app.Activity;
import android.os.Bundle;

public class Splash extends Activity{

	@Override
	protected void onCreate(Bundle savedInstanceState) {
		// TODO Auto-generated method stub
		super.onCreate(savedInstanceState);
	}

}

7. There is a variable in the code shown in Figure 10 named savedInstancesState. The variable name can be changed (as shown in Figure 11).
The variable is being sent to the superclass. In Java, classes can be derived from other classes. The class from which it is derived is referred to as the superclass. A Java superclass is a class that can give a method to a Java subclass.
8. The setContentView method will allow the new background called splash as shown in Figure 11.
package com.susands.calculations;

import android.app.Activity;
import android.os.Bundle;

public class Splash extends Activity{

	@Override
	protected void onCreate(Bundle savedSplashState) {
		// TODO Auto-generated method stub
		super.onCreate(savedSplashState);
		setContentView(R.layout.splash);
	}

}

Figure 11: Completed activity
 9. Submit the following for grading:
· Screenshot showing the completed activity.
The next step is to get the splash activity to launch first by editing the Android Manifest file as explained in the video, Android Application Development Tutorial – 13 – Introduction to the Android Manifest (4:07).
[image:]	Comment by susands: Video Link:
http://youtu.be/B5uJeno3xg8?list=PL2F07DBCDCC01493A

Embed Code:
<iframe width="560" height="315" src="//www.youtube.com/embed/B5uJeno3xg8?list=PL2F07DBCDCC01493A" frameborder="0" allowfullscreen></iframe>
The revised Manifest file is shown in Figure 12.
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.susands.calculations"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="21" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".Splash"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="com.susands.calculations.MAINACTIVITY" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Figure 12: Revised AndroidManifest.xml file
A thread will be used to transition from the splash screen to the starting point screen of the app. A thread allows an app to do multiple tasks at the same time instead of waiting for one operation to end before beginning the next. For more information, read Threads on the Android developer website. Watch the video, Android Application Development Tutorial – 14 – The Framework of a Thread (5:42), to add a thread to the project.
[image:]	Comment by susands: Video Link:

http://youtu.be/hy0mRoT1ZlM?list=PL2F07DBCDCC01493A

Embed Code:

<iframe width="560" height="315" src="//www.youtube.com/embed/hy0mRoT1ZlM?list=PL2F07DBCDCC01493A" frameborder="0" allowfullscreen></iframe>

Intents
An intent is used to request an action from another app component. Recall from CIT527AA Lesson 1 that an intent can be used to:
· Start an activity
· Start a service
· Deliver a broadcast
Intents are objects of android.content.Intent (which shows up in the import section of the file).
In Figure 13, the intent is being used to start an activity by adding the highlighted code.
Intent openStartingPoint = new Intent ("com.susands.calculations.MAINACTIVITY");
startActivity(openStartingPoint);

Figure 13: Adding an intent to start an activity
The example above is of an explicit intent. That means that the intent is being used to launch a specific app component, an activity. The activity being launched is com.susands.calucations.MAINACTIVITY.
An <intent filter> element is found in the Manifest file to list actions, categories, or data types that are associated with an activity, service, or broadcast. The intent-filter shown in Figure 14 is a snippet of code taken from the Manifest file and is part of the activity used to start an activity (displaying the splash screen upon the app’s launch.)
<intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

Figure 14: An intent-filter found within the Manifest file
Watch Android Application Tutorial – 15 – How to Start a New Activity via Intent (6:02).
[image:]	Comment by susands: Video Link:

http://youtu.be/Xpkbu2GrJpE?list=PL2F07DBCDCC01493A

Embed code:

<iframe width="560" height="315" src="//www.youtube.com/embed/Xpkbu2GrJpE?list=PL2F07DBCDCC01493A" frameborder="0" allowfullscreen></iframe>
The edited file is shown in Figure 15.
package com.susands.calculations;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;

public class Splash extends Activity{

	@Override
	protected void onCreate(Bundle savedSplashState) {
		// TODO Auto-generated method stub
		super.onCreate(savedSplashState);
		setContentView(R.layout.splash);
		Thread timer = new Thread(){
			public void run(){
				try{
					sleep(5000);
				} catch (InterruptedException e){
					e.printStackTrace();
				}finally{
					Intent openStartingPoint = new Intent ("com.susands.calculations.MAINACTIVITY");
					startActivity(openStartingPoint);
				}
			}
		};
		timer.start();
	}

}

Figure 15: Revised splash.java File adds timer
SUMMARY
This lesson discussed app customization by adding resources such as launch images and icon images. This lesson discussed how to add these resources to the project, and the proper code used to add resources in a project. The steps required to add a Java class to a project was discussed. The purpose of using an intent to start another activity such as adding another screen to the app was also covered.
ASSIGNMENTS
1. Lab: Android Manifest
2. Quiz

[image: Creative Commons License]This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Bunker Hill Community College
Written by: Original author: Daniel Downs; Edited version: Susan Sands
Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image1.jpeg

image2.png

