[image: C:\Users\karina.whetstine\Dropbox\TAACCCT - Davis\DOL\NISGTC Logo.jpg]
[image: Creative Commons License]
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Bunker Hill Community College
Written by: Original author: Daniel Downs; Edited version: Susan Sands
Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)
Development was funded by the Department of Labor (DOL) Trade Adjustment Assistance Community College and Career Training (TAACCCT) Grant No. TC-22525-11-60-A-48; The National Information Security, Geospatial Technologies Consortium (NISGTC) is an entity of Collin College of Texas, Bellevue College of Washington, Bunker Hill Community College of Massachusetts, Del Mar College of Texas, Moraine Valley Community College of Illinois, Rio Salado College of Arizona, and Salt Lake Community College of Utah.
This workforce solution was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The solution was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties or assurances of any kind, express or implied, with respect to such information, including any information on linked sites, and including, but not limited to accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability or ownership.

Lesson 2: Programming Structures
INTRODUCTION
Within an Android app, the developer needs to be able to take a choice from the user and have the app execute the proper statements. To accomplish this, Java uses decision structures to deal with different conditions. Conditionals and loops are the two major types of decision structures.
The lesson will also discuss how to add radio buttons and the Media Player to an app.
LESSON OBJECTIVES
By the end of this lesson, the student will be able to:
1. Identify logical operators.
2. Identify the proper conditional statement used for various decision scenarios.
3. List the types of loops available.
4. Demonstrate the use of the RadioGroup in an app.
LEARNING SEQUENCE
	

	Required Reading
	Read the following:
· Online Lesson Material

	Resources
	View the following:
· Android Application Development Tutorial – 45 – RadioButtons in a RadioGroup (6:55)
· Android Application Development Tutorial – 46 – Set the Radio to the OnChecked Change Listener Station (6:55)
· Android Application Tutorial – 17 – Adding Music with MediaPlayer (6:36)
Other resources:
· Radio Buttons
· Android RadioGroup Example

	Assignments
	Complete the following:
· Android RadioGroup Example
· Quiz

INSTRUCTION

Java: Programming Structures
There are three programming structures in Java:
1. Sequence (one instruction after another) - this means that the computer will execute the Java statements in the order in which they are written—in sequence, one after the other.
2. Decision (depends on a condition that is evaluated as either True or False) – control passes to one or another instruction for execution accordingly.
3. Iteration (also known as repetition) – a sequence of instructions are repeated UNTIL a condition is false. Sometimes the condition is not met and the instructions are not executed. This can also be written as WHILE a condition is true.
Conditional Statements
When a condition is tested, it will either be true or false. Java uses the If statement to execute conditional statements. If the condition is true, control is passed to a sequence of instructions for execution as a result and statements of code are executed accordingly. The If statement is a single selection statement.
The syntax for an If statement is as follows:
if (condition){
	//Statements executed
}
There can also be a situation when the logic of the app requires one set of statements executed if a condition is true, and an alternate set of statements executes if the condition is false. This is called an If Else statement and is referred to as a multiple-selection statement. The syntax is as follows:
if (condition){
	//Statements executed for a true condition
} else {
 //Statements executed for a false condition
}
Indenting the statements as shown above helps the developer organize the program for readability.
There are times when more than one decision must be made before statements are executed. If statements can be nested if need be, and the syntax is as follows:
if (condition1){
 if (condition2){
	//Statements executed for a true condition
 } else {
 //Statements executed for a false condition
 }
}
In the code above:
· Both conditions must be true for the statements to be executed for a true condition.
· If condition 1 is true, and condition 2 is false, the else statements are executed.
· If condition 1 is false, then condition 2 is not checked, and control is passed to the end of the statement.
With the "simple" code above, it is easy to see how complex and confusing the logic can become.
The code shown in Figure 1 is an example of using a conditional statement to check the orientation of the screen. This example uses Fragments, which are discussed in more detail in Lesson 3.
package com.example.myfragments;

import android.os.Bundle;
import android.app.Activity;
import android.app.FragmentManager;
import android.app.FragmentTransaction;
import android.content.res.Configuration;
import android.view.WindowManager;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Configuration config = getResources().getConfiguration();

 FragmentManager fragmentManager = getFragmentManager();
 FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();

 /**
 * Check the device orientation and act accordingly
 */
 if (config.orientation == Configuration.ORIENTATION_LANDSCAPE) {
 /**
 * Landscape mode of the device
 */
 LM_Fragment ls_fragment = new LM_Fragment();
 fragmentTransaction.replace(android.R.id.content, ls_fragment);
 }else{
 /**
 * Portrait mode of the device
 */
 PM_Fragment pm_fragment = new PM_Fragment();
 fragmentTransaction.replace(android.R.id.content, pm_fragment);
 }
 fragmentTransaction.commit();
 }

}

Figure 1: Using conditional statements
The code uses two fragments. If the device is being held in landscape orientation, the user will see a different view than if the device is being held in a portrait orientation.
Relational Operators
The relational operators shown in the table below are used within the conditional statement to test a condition. Relational operators evaluate the relationship between the elements being tested such as a variable and a number, for example. In the example shown in the table, Relational Operators used to Test Conditions, the == relational operator is used to determine whether the device is being held in a landscape orientation.
Relational Operators
	Relational Operator
	Meaning

	==
	Equal to

	!=
	Not equal to

	>
	Greater than

	<
	Less than

	>=
	Greater than or equal to

	<=
	Less than or equal to

Numbers are the first element that comes to mind when one thinks about comparing values. Strings can also be tested when executing a comparison in a conditional statement. A string value comparison makes a character by character comparison of two strings. In Java, strings are compared with one equal sign (=).
Logical Operators
A single statement can be used to test more than one condition. For example, the developer may want to specify that more than one condition must be true or one of several conditions must be met before certain statements will execute. A compound condition exists when more than one condition is included in an If statement. The logical operators are shown in table below.
Logical Operators
	Logical Operator
	Description

	&&
	And
All conditions must be true

	||
	Or
At least one condition must be true

	!
	Not
Reverses the meaning of a condition

The following example uses a logical operator to rewrite the code from above:
	Without logical operator
	With logical operator

	if (condition1){
 if (condition2){
	//Statements executed for a true condition
 } else {
 //Statements executed for a false condition
 }
}

	if (condition1) && (condition2){
	//Statements executed for two true conditions
 } else {
 //Statements executed for a false condition
 }

Loops
When a block of code needs to be executed a number of times, this is referred to as a loop. Loops are repetition statements. A program will perform statements repeatedly as long as the condition exists. There are three types of loops in Java.
When a task needs to be repeated a certain number of times, a while loop is used, and the syntax is as follows:
while(condition1)
{
 //Statements
}
A do…while loop is used if there is a need to continually execute a block of statements while a certain condition is true, and the syntax is as follows:
do
{
 //Statements
}while(condition1);
A for loop is a loop that needs to execute a specific number of times, and the syntax is as follows:
for(initialization; condition1; update)
{
 //Statements
}
A Boolean expression is used in Java to return a Boolean value of true or false after evaluating a condition. The most common Boolean expression compares the value of a variable with the value of a second variable, constant, or arithmetic expression. For example, there are two declared variables:
int i = 5;
int j = 15;
The expression i == 5 would return a value of true since the value of i is 5. The expression i == j would return a value of false since i is 5 and j is 15.
RadioButton
Radio buttons provide a way for a user to make a choice from the options presented. Take, for example, a test question. Each answer can be represented by a radio button. Only one answer, or one radio button, is selected.
RadioButton Controls are used to provide the functionality described within an app. RadioButton controls are used together in a RadioGroup. Selecting one radio button deselects all others within the group. When a RadioGroup is added to the layout with the Form Widget in Eclipse, three radio buttons are added by default as shown in Figure 2.
[image:]
Figure 2: Adding the RadioGroup
The default code added to the layout is displayed in Figure 3.
<RadioGroup
 android:id="@+id/radioGroup1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" >

 <RadioButton
 android:id="@+id/radio0"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="RadioButton" />

 <RadioButton
 android:id="@+id/radio1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="RadioButton" />

 <RadioButton
 android:id="@+id/radio2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="RadioButton" />
 </RadioGroup>

Figure 3: XML code for a RadioGroup
View the video, Android Application Development Tutorial – 45 – RadioButtons in a RadioGroup (7:18)
[image:]	Comment by susands:
Video Link:
http://youtu.be/u_kGz5J-dNw?list=PL2F07DBCDCC01493A

Embed code:
<iframe width="560" height="315" src="https://www.youtube.com/embed/u_kGz5J-dNw?list=PL2F07DBCDCC01493A" frameborder="0" allowfullscreen></iframe>
Read Radio Buttons. This example adds the code, android:onClick=”onRadioButtonClicked”, to each button so that when the user select a button, that RadioButton object receives an on-click event and recognizes that the button has been selected.
The method shown in Figure 4, displays the code that handles the click event.
public void onRadioButtonClicked(View view) {
 // Is the button now checked?
 boolean checked = ((RadioButton) view).isChecked();

 // Check which radio button was clicked
 switch(view.getId()) {
 case R.id.radio_pirates:
 if (checked)
 // Pirates are the best
 break;
 case R.id.radio_ninjas:
 if (checked)
 // Ninjas rule
 break;
 }
}

Figure 4: Method for handling radio button click event
Watch the video, Android Application Development Tutorial – 46 – Set the Radio to the OnChecked Change Listener Station (6:55) to learn how to use the onCheckedChange.This method provides a second way to recognize when any of the radio buttons in the RadioGroup have been selected.
[image:]	Comment by susands: .
Video Link: http://youtu.be/2jduTfdt8RY?list=PL2F07DBCDCC01493A

Embed Code:

<iframe width="560" height="315" src="https://www.youtube.com/embed/2jduTfdt8RY?list=PL2F07DBCDCC01493A" frameborder="0" allowfullscreen></iframe>
Complete the tutorial, Android RadioGroup Example.
Android RadioGroup Example
In this exercise, you will create a RadioGroup which allows a user to select one RadioButton from the set. Browse to http://examples.javacodegeeks.com/android/core/ui/radiogroup/android-radiogroup-example/.
1. Create a new Android Application project as directed in Steps 1 through 4 of the tutorial.
2. Run the app.
Submit the following for grading:
· The XML layout file
· The MainActivity.java file
· A screen shot of the running app
Adding Music
To complete the project used throughout the first four lessons, music will be added with MediaPlayer. The music file should be an .mp3 or .ogg file, and the filename needs to be in all lower case. As mentioned in the previous lesson, all music and video files are saved in the /res/raw folder. Watch the video, Android Application Tutorial – 17 – Adding Music with MediaPlayer (6:36).
[image:]	Comment by susands: Video Link:
http://youtu.be/-zGS_zrL0rY?list=PL2F07DBCDCC01493A

Embed Code:

<iframe width="560" height="315" src="https://www.youtube.com/embed/-zGS_zrL0rY?list=PL2F07DBCDCC01493A" frameborder="0" allowfullscreen></iframe>
The MediaPlayer class must be imported so that all of its methods can be used.
SUMMARY
This lesson discussed two decision making mechanisms that can be used in an app. The first is the conditional statements which when tested will result in either a true or false condition. The second was the loop which can be used to execute code a number of times.
[bookmark: _GoBack]To finish up the project tutorials begun in CIT527AA, Lesson 1, the MediaPlayer class was added to the project so that sound could be added to the app.
RadioButtons are used within a RadioGroup as an input control within an app to allow a user to select exactly one option from the set.
ASSIGNMENTS
Note: Assignment 1, Android RadioGroup Example, details were provided within the lesson.
1. Android RadioGroup Example
2. Quiz
[image: Creative Commons License]This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Bunker Hill Community College
Written by: Original author: Daniel Downs; Edited version: Susan Sands
Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

image3.png
1 Project!
Life Point: 20 ,
Add one

Sub one

RadioButto)

RadioButtoj
RadioButiop|

image4.png
< send.xml

<7xml version="1.0" encoding-"utf-8"7>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent” android:layout_height-"match_parent ">
<EditText android:layout_height="wrap_content”
android:layout_width-"match_parent"” android:id-"€+id/etSend">
</EditText>
<Button android:layout_below="€id/etSend"” android:layout_alignParentRight=
android: layout_width="wrap_content” android:layout_height="wrap_conten
<Button android:layout_toLeftOf-"8id/bSA" android:layout_alignTop="€id/bSA’
android: layout_width="wrap_content” android:layout_height="wrap_conten
<TextView android:layout_below="€id/bSAFR]" android:text="TextView" androi

android:layout_width="wrap_content” android:layout_height-"wrap_conten

</RelativeLayout>

image5.png
public class Data extends Activity implements OnClicklistener{

Button start, startfor;
EditText sendET; i
TextView gotAnswer;

. protected void onCreate(Bundle savedInstanceState) {
2 /7 Auto-generated method stub
super .onCreate(savedInstanceState);
setContentView(R. layout.get);
initialize();
}

private void initialize() {
/ Auto-generated method stub
start = (Button) findVieaById(R.id.bSA);
startfor = (Button) FindViewById(R.id.bSAFR);
sendET = (EditText) findViewById(R.id.etSend);
gotAnswer = (TextView) findViewById(R.1id.tvGot;
a start.setOnClickListener(this);
a startFor.setOnClicklistener(this

015

image6.png
public class Splash extends Activity{
0verride
N protected void onCreate(Bundle TravisLoveBacon) {
%) Auto-generated method stub
super..onCreate(TravisLoveBacon);
setContentVien(R. layout. splash);
Thread timer = new Thread(){
- public void run(){
try{
sleep(5000);
} catch (InterruptedException e){
e.printStackTrace();
}inally{
Intent openStartingPoint = new Intent("com.thenewboston. travis.STARTINGPOINT")
startActivity(openStartingPoint);
}
}
b
timer. start();
}
0verride
la protected void onPause() {
@ / Auto-generated method stub '

super.onPause();

image1.jpeg
The National Information, Security & Geospatial Technologies Consortium

image2.png

