INDT 100 Lesson 3

Overview
Manipulation of units used in Aerospace industry.
Unit conversions
New units

Purpose

Objectives
Skills/information that will be learned.
- Recognize Common units.
- Identify the quantity associated with each unit.
- Know where to find information on unfamiliar units

Information
(Give and/or demonstrate necessary information)
Common quantities that we have units for:
- Time, temp, Pressure, Distance, Area, Volume, Flow-rate, Velocity, Angle, Light, Noise, Pain, Electrical potential, Electrical Flow, Resistance, Clarity, Power, Work
- All the units that apply to the above:
 - Special units for Aeronautics: See Below

Verification
(Steps to check for student understanding)
Throw-out some physical situations and ask how to measure them.

Activity
(Describe the independent activity to reinforce this lesson)
Use the “antique” aircraft instrumentation and see exactly what they are and what units they are displayed in. Possibly build a lab or trainer board where these can be used for training.

Materials Needed
- BCT

Teacher’s or other reference

Discuss the Mars Rover debacle…

Other Resources

Summary
Quantities and units are part of our communications. Very important.
<table>
<thead>
<tr>
<th>Category</th>
<th>Unit</th>
<th>Equivalent Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>meters/second(^2) (m/s(^2)), kilometers/second(^2) (km/s(^2)), (kilometers/hour)/second (km/h-s), g-unit (g)</td>
<td>inches/second(^2) (in/s(^2)), feet/second(^2) (ft/s(^2)), (miles/hour)/second (mph/s), g-unit (g)</td>
</tr>
<tr>
<td>Angle</td>
<td>radian (rad), degree (deg), revolution</td>
<td>radian (rad), degree (deg), revolution</td>
</tr>
<tr>
<td>Angular acceleration</td>
<td>radians/second(^2) (rad/s(^2)), degrees/second(^2) (deg/s(^2))</td>
<td>radians/second(^2) (rad/s(^2)), degrees/second(^2) (deg/s(^2))</td>
</tr>
<tr>
<td>Angular velocity</td>
<td>radians/second (rad/s), degrees/second (deg/s), revolutions/minute (rpm), revolutions/second (rps)</td>
<td>radians/second (rad/s), degrees/second (deg/s), revolutions/minute (rpm), revolutions/second (rps)</td>
</tr>
<tr>
<td>Density</td>
<td>kilogram/meter(^3) (kg/m(^3))</td>
<td>pound mass/foot(^3) (lbm/ft(^3)), slug/foot(^3) (slug/ft(^3)), pound mass/inch(^3) (lbm/in(^3))</td>
</tr>
<tr>
<td>Force</td>
<td>newton (N)</td>
<td>pound (lb)</td>
</tr>
<tr>
<td>Inertia</td>
<td>kilogram-meter(^2) (kg-m(^2))</td>
<td>slug-foot(^2) (slug-ft(^2))</td>
</tr>
<tr>
<td>Length</td>
<td>meter (m)</td>
<td>inch (in), foot (ft), mile (mi), nautical mile (nm)</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram (kg)</td>
<td>slug (slug), pound mass (lbm)</td>
</tr>
<tr>
<td>Pressure</td>
<td>pascal (Pa)</td>
<td>pound/inch(^2) (psi), pound/foot(^2) (psf), atmosphere (atm)</td>
</tr>
<tr>
<td>Temperature</td>
<td>kelvin (K), degrees Celsius (°C)</td>
<td>degrees Fahrenheit (°F), degrees Rankine (°R)</td>
</tr>
<tr>
<td>Torque</td>
<td>newton-meter (N-m)</td>
<td>pound-feet (lb-ft)</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Velocity</td>
<td>meters/second (m/s), kilometers/second (km/s), kilometers/hour (km/h)</td>
<td>inches/second (in/sec), feet/second (ft/sec), feet/minute (ft/min), miles/hour (mph), knots</td>
</tr>
</tbody>
</table>