ADULT LEARNING Academy

Pre-Algebra Workbook

Unit 7: Algebra

Debbie Char and Lisa Whetstine St. Louis Community College

First Version: 01/12/2015

This workforce solution was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The solution was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

Adult Learning Academy
Pre-Algebra Workbook
Unit 7: Algebra

Learning Objectives

1. Variables and Expressions:

\square Differentiate between constants and variables; represent variables with letters, and identify like terms
\square Understand the difference between an expression and an equation
\square Simplify and evaluate algebraic expressions involving variables; distribute and combine like terms
\square Translate phrases into algebraic expressions and equationsWrite expressions to represent area and perimeter of rectangles

2. Equations:

\square Use mathematical properties to solve basic linear equations involving a single variableCheck solutions by plugging answers into the original equation and evaluating each side of the equation
\square Solve one and two-step equations, including those involving fractions
\square Solve multi-step equations, including those involving distribution, and variables on both sides of the equation
\square Check solutions, by plugging answers into the original equations

3. Word Problems:

\square Set up and solve word problems involving direct translations, including applications to the healthcare industry

\qquad
Why All the Letters in Algebra? What is a variable?
Why we do the same... 2-step equations Why we do the same... Multip-step Two-step equations
Variables on both sides
Ex. 1 Variables on both sides Ex. 2 Variables on both sides
 Worksheets: Solving Equations

Writing Expressions

\qquad | Why do the same thing to both sides? |
| :--- |
| Simple equations |
| Representing a relationship w/ equation |
| One-step equation intuition |
| 1-step eq. intuition exercise intro |
| Solving one-step equations |
| Solving one-step equations 2 |
| One-step Equations |
| Add/Sub the same thing from both sides |
| Intuition why we divide both sides |

> Combining Like Terms 1
Combining Like Terms 2

One-step Equation Intuition
One-step Equations
One-step equations w/ multipli.

 \qquad

Two-step equations
Multi-step equations w/ distrib.
Worksheets: Solving Equations

\section*{ALA Pre-Algebra Workbook | Unit 7: Algebra} | www.khanacademy.org |
| :--- |
| |
| |
| |
| www.khanacademy.org |

Solving 1-step equations
Solving 2-step equations

Topic	Website	Videos	Exercises
Two-Step	$\underline{\text { http://www.youtube.com/watch?v=KBpNLjiv8pk }}$		
Combining like terms	$\underline{\text { http://www.youtube.com/watch?v=fXD4DjSyoyo }}$		
Variable on each side	$\underline{\text { http://www.youtube.com/watch?v=gQdH5PKWrPQ }}$		
Distributive Property	$\underline{\text { http://www.youtube.com/watch?v=XfaWLVLfeJM }}$		
Unit 7 Review Flashcards	$\underline{\text { www.stlcc.edu }}$	Powerpoint on Blackboard	
Compass Review	http://www.hostos.cuny.edu/oaa/compass/pre-alg_prac7.htm		

HEALTH MoHealthWINs position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with
and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

(c) (i) Unless otherwise noted this MoHealthWINs material by St. Louis Community College is licensed under a Creative Commons Attribution 4.0

St. Louis Community College	Adult Learning Academy Pre-Algebra Workbook 7.1 Simplifying Expressions
$5 x+3 x$	$5(\mathrm{x}-2)$
$5 x-3 x$	$3(\mathrm{x}+1)$
$3 x-5 x$	$5(x-1)+3(x+2)$
$\mathrm{X}+\mathrm{X}$	$3 x+5-(2 x+1)$
$\mathrm{X}-\mathrm{X}$	$3 \mathrm{x}+5-(2 \mathrm{x}-1)$
$\mathrm{x} \square \mathrm{x}$	$3 \mathrm{x}+5(2 \mathrm{x}-1)$
$x \div x$	$3 \mathrm{x}-5(2 \mathrm{x}-1)$
$x+y$	$7-3(2 x-1)$
$3 x+3 y+5 x-y$	$7-3(2 x+1)$

St. Louis College
$5 x+3 x$
$5 x-3 x$
$3 x-5 x$
$3 x+5-(2 x+1)$
$3 x+5-(2 x-1)$
$3 x+5(2 x-1)$
$3 x-5(2 x-1)$
$7-3(2 x+1)$

Adult Learning Academy
Pre-Algebra Workbook
7.2 Expressions and Equations

EXPRESSION (SIMPLIFY if possible)
$x+x+x$
$3(x-4)$
$5 x-x$
$2-x$
$x-5-3$
$7-2(x+1)$
$7-2(x-1)$
$4 x-1 / 2 x$

EQUATION (SOLVE)

$$
x+x+x=12
$$

$$
3(x-4)=5
$$

$$
5 x-x=-20
$$

$$
2-x=-6
$$

$$
x-5-3=80
$$

$$
7-2(x+1)=-1
$$

$$
7-2(x-1)=-1
$$

$4 x-1 / 2 x=7$

Adult Learning Academy
Pre-Algebra Workbook
7.3 One-Step Equations

9) $-5=x+4$
10) $x+3=15$
11) $5 x=7$
12) $x-4=20$
13) $1 / 2 x=12$
14) $6 y=48$
15) $3 / 4 x=18$
16) $\frac{a}{3}=12$
17) $7 x=7$
18) $w+100=-300$

$$
8+\operatorname{loc}
$$

Adult Learning Academy
Pre-Algebra Workbook
7.4 Two-Step Equations

1) $2 x+1=7$
2) $7=5+2 x$
3) $3 x-1=11$
4) $10-3 x=13$
5) $-2 x+1=9$
6) $\frac{x+4}{3}=10$
7) $-5 x-1=9$
8) $\frac{x-7}{5}=2$
9) $5+3 x=17$
10) $-4 a+2=2$
11) $7-3 x=13$
12) $\frac{w}{3}-10$

Adult Learning Academy
Pre-Algebra Workbook
7.6 Multi-Step Equations

1) $x+3 x=12$
2) $4 x=2 x+10$
3) $5 x-3 x+2=12$
4) $-5 x+3=-4 x$
5) $3 x-5 x+2=12$
6) $x-5=2 x$
7) $5(x-2)=20$
8) $2(x+1)=x-3$
9) $3(x+1)=15$
10) $-2(x+1)=3 x-7$
11) $-2(x+4)=16$
12) $3 x=x+4$ Adult Learning Academy
Pre-Algebra Workbook
7.6 Healthcare Applications
I. Scenario: A baby weighed 7 pounds at birth. How much would she weigh if...
...she gained 2 pounds from her birth weight? \qquad
... she lost 2 pounds from her birth weight? \qquad
... she doubled her birth weight? \qquad
... she weighed only half her birth weight? \qquad
... her weight stayed the same as her birth weight? \qquad
Now we'll generalize to any baby: a baby weighed \mathbf{X} pounds at birth. Match each algebraic expression with its description in words:

The baby gained 2 pounds.
X-2
The baby lost 2 pounds.
The baby doubled her birth weight.
$\mathrm{X}+2$
The baby weighs only half of what she did at birth.
2X
The baby's weight stayed the same as her birth weight. $\quad X \div 2$
II. Scenario: A patient's initial pulse was X beats per minute. Write an algebraic expression for the patient's pulse for each description below.
a) The patient's pulse dropped by 5 beats.
b) The patient's pulse rose by 5 beats.
c) The patient's pulse doubled.
d) The patient's pulse is only half as fast as it was originally.
e) The patient's pulse is 30 less than it was originally.
f) The patient's pulse is 30 greater than it was originally.
III. Scenario: Aisha is A years old. Bakir is B years old. Write an algebraic expression for each description:
a) Aisha's age next year: \qquad
b) Bakir's age two years ago: \qquad
c) Aisha's age in 10 years: \qquad
d) The sum of Aisha's and Bakir's ages: \qquad
e) Twice Aisha's age: \qquad
f) Half of Bakir's age: \qquad
g) The mean (average) of Aisha's and Bakir's ages: \qquad
h) If A > B, who is older? \qquad How much older? \qquad
Using the variable A to represent Aisha's age and the variable B to represent Bakir's age, write an EQUATION for each description (use an = sign!). Then solve the equation!
i) In three years, Aisha will be 21. How old is she now?
j) Five years ago, Bakir was 15 . How old is he now?
k) Twice Aisha's age is 48. How old is she?

1) Half of Bakir's age is 12 . How old is he?
m) If you double Aisha's age and add 5, you get 35 . How old is she?
n) Aisha is three years older than Bakir. The sum of their ages is 23 . How old are they?
o) Aisha is twice as old as Bakir. The sum of their ages is 30 . How old are they?

IV. Write an equation and solve:

a) Callie has 3 more patients to care for than Walter does. Walter has 5 patients. How many does Callie have?
b) The perimeter of the rectangular operating room is 170 feet. The length is 5 feet more than the width. What are the dimensions of the operating room?
c) The perimeter of the rectangular staff lounge is 150 feet. The length is twice the width. What are the dimensions of the lounge?
d) Insurance will pay half of the cost of the operation, after the patient pays the $\$ 100$ deductible. The operation costs $\$ 1500$. How much will insurance pay?

V. Graphic Practice: Write an expression for the perimeter and the area of each.

Perimeter: \qquad
Area: \qquad

Perimeter: \qquad
Area: \qquad

Perimeter: \qquad
Area: \qquad

