

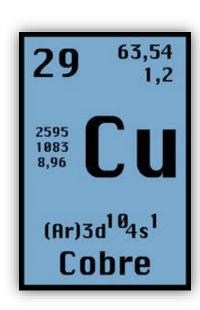
Átomo

La materia se compone de átomos. Los átomos se componen de:

- ✓ Protones (carga +)
- ✓ Neutrones (estado neutral)
- ✓ Electrones (carga -)

Según el modelo de Bohr:

- ✓ Los protones y neutrones se encuentran el un núcleo.
- ✓ Los electrones alrededor de el en unos orbitales con diferentes niveles de energía.
- ✓ Los electrones son los encargados de las características del material.


Átomo: número atómico

- ✓ Los elementos de la tabla periódica se colocan según su número atómico.
- ✓ Este número representa la cantidad de protones que tiene el elemento.
- ✓ Los elementos en su estado natural son neutros, es decir, contienen el mismo número de protones y electrones.

Observa el elemento cobre (Cu):

Número atómico 29

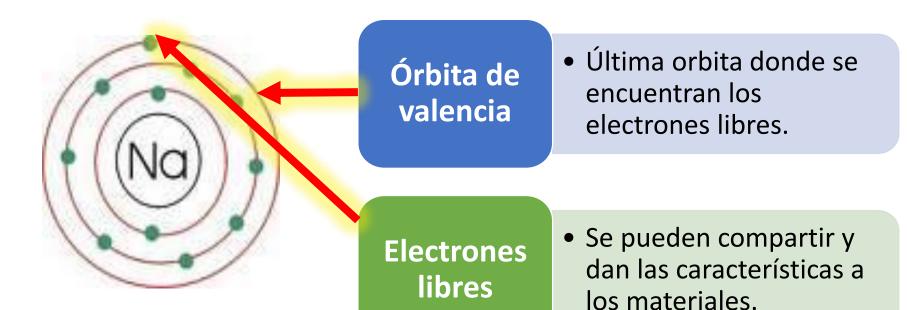
29 electrones y 29 protones

Átomo: iones

✓ Los elementos se encuentran en el ambiente interaccionando con otros.

✓ Al interaccionar, los elementos pierden o ganan electrones.

- ✓ Cuando pierden o ganan electrones se les llaman iones.
- ✓ Los iones tienen carga positiva o negativa.
 - lon positivo: significa que el elemento pierde electrones. Se le conoce como anión.
 - Ion negativo: significa que el elemento gana electrones. Se le conoce como catión.



Átomo: electrones libres

Los electrones son los responsables de la características eléctricas del elemento.

Los electrones se encuentran en los orbitales alrededor el núcleo.

Átomo: clasificación de materiales

- ✓ Conductores: tiene uno o dos electrones libres. Ejemplo: oro, plata y cobre.
- ✓ Semiconductores: tienen cuatro electrones libres . Ejemplos: silicio y germanio. (Estos se estudiarán en el curso de electrónica TEEL 1048.)
- ✓ Aisladores: tienen ocho electrones libres y son estables.

En este curso estudiaremos los materiales conductores.

Carga eléctrica

Se determina por el número de electrones que contiene un elemento, en relación a su número de protones.

Símbolo de carga: Q

Unidad de carga: COULOMb (C)

Carga eléctrica: fórmula

Podemos calcular la carga eléctrica del material por medio de la fórmula:

Cantidad de electrones en el elemento

$$Q = \frac{\text{# de electrones}}{6.25 \text{ X}10^{18} \text{ electrones /C}}$$

Cantidad de electrones en un coulomb de carga.

Carga eléctrica: ejemplo

Un elemento tiene una carga de 6.25 x10 ¹⁸ electrones.

Calcula la carga en coulomb.

Datos: # de electrones = 6.25×10^{18}

Fórmula:

$$Q = \frac{\text{# de electrones}}{6.25 \times 10^{18} \text{ electrones /C}}$$

Solución:

$$Q = \frac{6.25 \times 10^{18} \text{ electrones}}{6.25 \times 10^{18} \text{ electrones} / C}$$

$$Q = 1C$$

Voltaje o diferencia de potencial

Capacidad de diferentes cargas para ejercer un trabajo o lograr que se muevan los electrones de un lugar a otro.

Símbolo del voltaje: V

Unidad de voltaje: Voltio (V)

Voltaje

Matemáticamente podemos definir el voltaje como la cantidad de energía o trabajo utilizado para mover una carga eléctrica.

Fórmula:
$$V = \frac{V}{C}$$

V = voltaje (voltio)

W = energía utilizada. La unidad de energía es el julio (j)

Q = carga eléctrica. La unidad de carga eléctrica es el coulomb (C)

10

Voltaje: ejemplo

Si 40 J de energía son utilizados para mover 40 C de carga, calcule la diferencia en potencial eléctrico.

Datos:

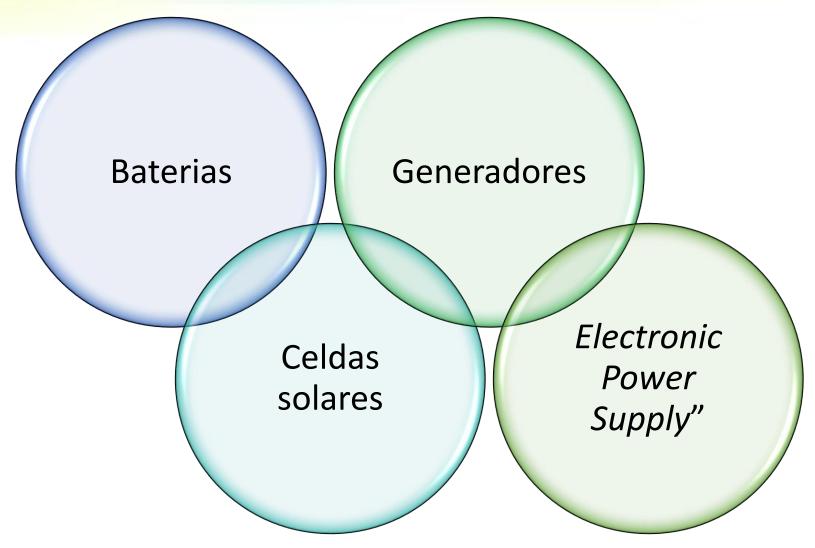
$$W = 40 J$$

$$Q = 40 C$$

V = desconocido

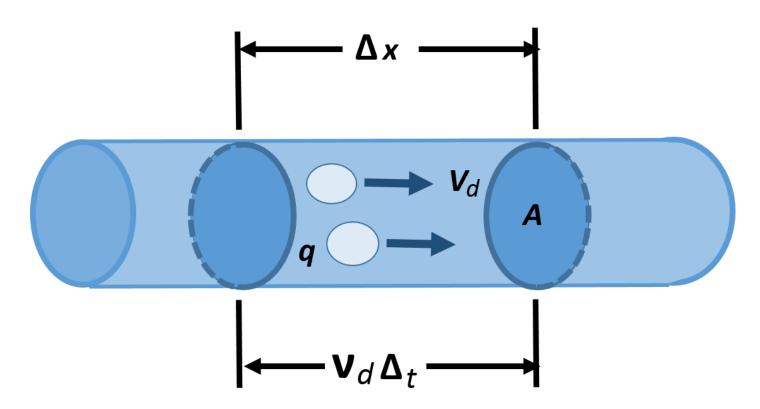
Fórmula:

$$V = \frac{W}{Q}$$


Solución:

$$V = \frac{40J}{40C}$$

Voltaje: fuentes de voltaje



Corriente

Corriente eléctrica:

Movimiento o flujo de electrones debido a un diferencial de potencial en un tiempo determinado.

Corriente

Matemáticamente, podemos definir la corriente como la relación de la carga entre el tiempo.

Fórmula:

$$I = \frac{Q}{t}$$

Q = carga eléctrica. La unidad de carga eléctrica es el coulomb (C)

t = tiempo. La unidad de tiempo es el segundo (s)

I = Corriente. La unidad de corriente es el ampere (A)

Corriente: ejemplo

Encuentre la corriente necesaria para cargar un dieléctrico de manera que acumule una carga de 20C después de 4s.

Datos:

$$Q = 20C$$

$$t = 4s$$

I = desconocida (A)

Fórmula:

$$I = \frac{Q}{t}$$

$$I = \frac{20C}{4s}$$

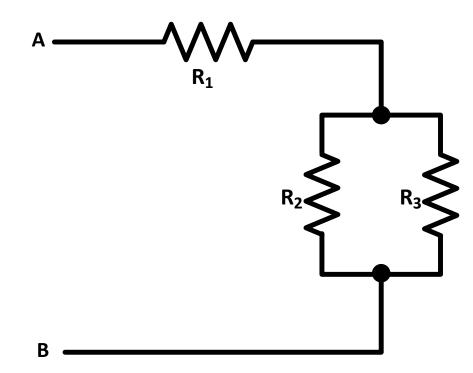
$$I = 5A$$

Resistencia

La resistencia es la oposición al flujo de corriente.

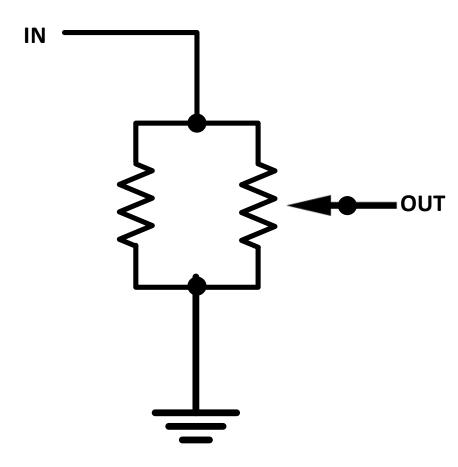
Los usos más frecuentes son: limitar la corriente, dividir el voltaje y generar calor.

Símbolo de resistencia = \mathbb{R}


Unidad de la resistencia = $Ohm(\Omega)$

Resistencia: clasificación

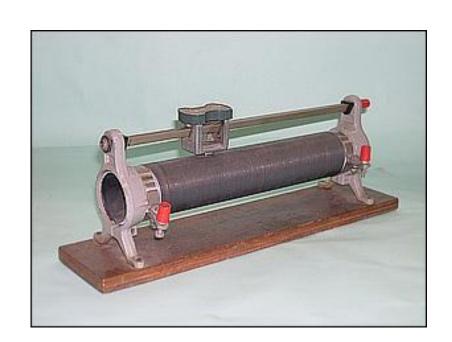
- Las resistencias se pueden clasificar en fijas y variables.
- Las resistencias fijas son aquellas que tienen un valor fijo.
- La mayoría de las resistencias están hechas de alguna composición de carbono o alambres enredados.

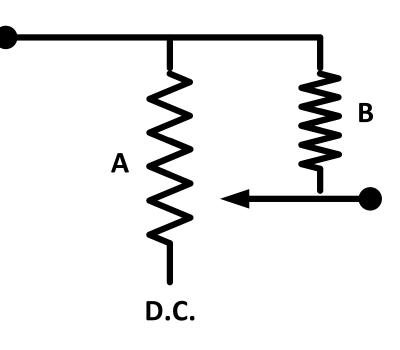


Resistencia: variables

Las resistencias variables se clasifican en potenciómetro y reóstato.

El potenciómetro es utilizado para cambiar el voltaje.





Resistencia: variables

El **reóstato** es usado para controlar grandes cantidades de corriente

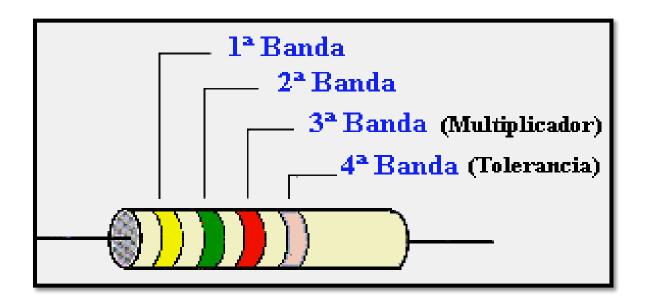
Resistencia: conductancia

Lo opuesto a la resistencia es la conductancia.

La conductancia la podemos definir como la capacidad para dejar pasar la corriente.

Formula:
$$G = \frac{1}{R}$$

Unidad de conductancia: **Siemens (S)**, también se usa el **MHO (℧)**



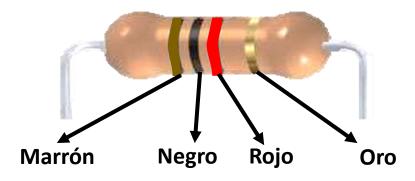
Resistencia

El valor de las resistencias fijas se determina a través de un código de colores.

- ✓ La primera y segunda banda son los dígitos.
- ✓ La tercera banda es el múltiplo.
- ✓ Y la cuarta banda es la tolerancia.

Resistencia

Cada color tiene su valor en dígitos, en múltiplo y en tolerancia.


Color	Valor	Multiplicador	Tolerancia
Plata		0.01	10%
Oro		0.1	5%
Negro	0	1	
Marrón	1	10	1%
Rojo	2	100	2%
Anaranjado	3	1000	3%
Amarillo	4	10,000	4%
Verde	5	100,000	
Azul	6	1,000,000	
Violeta	7	10,000,000	
Gris	8	100,000,000	
Blanco	9	1,000,000,000	
No color			20%

¿Cómo se calcula el valor de la resistancia?

Una resistencia con los siguientes colores:

Tiene los siguientes dígitos 1 y 0 se convierten en 10.

El múltiplo es 100

Multiplicas 10 x 100 y obtienes el valor de la resistencia, llamado valor nominal 1000 ohmios o 1 kilo ohmio.

10 x 100 = 1000 Ω valor nominal

5% tolerancia

El oro tiene una tolerancia de 5%

Tolerancia

La tolerancia indica cuán precisa es la resistencia.

✓ Mientras más grande sea la tolerancia, la resistencia es menos precisa y más barata.

✓ Si la tolerancia es pequeña, la resistencia es más precisa y más costosa.

Tolerancia

¿Cómo calcular los valores máximos y mínimos de la resistencia?

- 1. Multiplicar el valor nominal por la tolerancia en decimal.
- 2. El resultado lo sumas la valor nominal y obtienes el valor máximo.
- 3. El resultado del paso 1 lo resta al valor nominal y obtienes el valor mínimo.

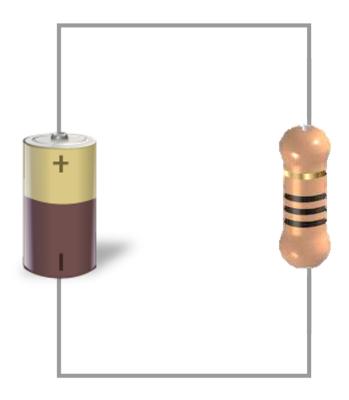
$$1000 \Omega, 5\%$$

$$1000\Omega \times 0.05 = 50$$

$$1000\Omega + 50 = 1050\Omega$$
 Valor máximo

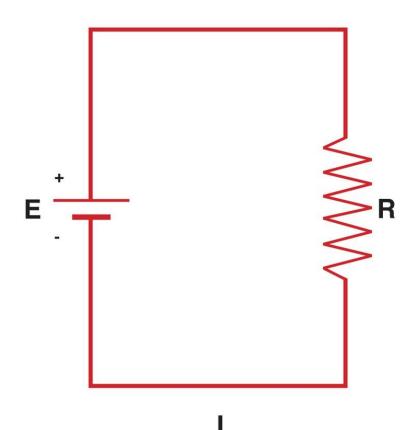
$$1000\Omega - 50 = 950\Omega$$
 Valor mínimo

Circuito eléctrico: partes básicas


Partes básicas	En el caso de los circuitos D.C.
1. Fuente de voltaje:	Batería
2. Carga:	Resistencia
3.Medios de conducción:	Alambres de cobre

Circuito eléctrico: diagrama pictórico

Este es un diagrama pictórico de un circuito eléctrico:

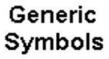


Circuito eléctrico: diagrama esquemático

Este es un diagrama esquemático de un circuito eléctrico:

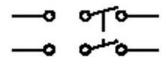
Circuito eléctrico: interruptores (switches)

• Los interruptores o *switches* son otro componente de los circuitos eléctricos.


 Existen diferentes tipos de interruptores para diferentes usos.

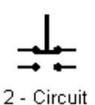
• A continuación te presentamos los nombres de los interruptores y sus respectivos símbolos.

Circuito Eléctrico: interruptores (switches) y sus respectivos símbolos

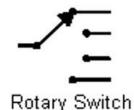

SPST Single Pole Single Throw

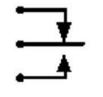
Single Pole Double Throw

Double Pole Single Throw



DPDT
Double Pole Double Throw


Push Button Switches



Specials

Relay Contacts

Referencias

• Floyd, T. L. (2007). *Principios de circuitos eléctricos*. Octava Edición, México: Pearson Educación.

