Changes saved but not submitted

Viewing: MEMS 211 : MICRO-FABRICATION PROCESSING

Last edit: Thu, 29 Sep 2022 17:36:55 GMT

Is this a fast track change?
No

Course ID
110657

Subject
MEMS - Micro-Electromechanical Systems

Course Number
211

Title
MICRO-FABRICATION PROCESSING

Division
Engineering Technologies

Effective Term
Spring 2023

Method of Delivery
In Person

Typically Offered
Offered Fall Term Only

CIP Code
15.0616 - Semiconductor Manufacturing Technology/Technician.

SOC Code
Standard Occupational Classification (SOC)

<table>
<thead>
<tr>
<th>SOC</th>
<th>Standard Occupational Classification Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-3023</td>
<td>Electrical and Electronics Engineering Technicians</td>
</tr>
<tr>
<td>51-9141</td>
<td>Semiconductor Processors</td>
</tr>
</tbody>
</table>

Course Level
Technical

Is this an international course?

Grading Basis
Graded

Grading Procedures

<table>
<thead>
<tr>
<th>Graded Element</th>
<th>% of overall course grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>40%</td>
</tr>
<tr>
<td>Homework/Quizzes/Exams</td>
<td>40%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
</tbody>
</table>

Upload Sample Syllabus

Course Hours

Minimum Credit Hours
3

Maximum Credit Hours
3

Is this course repeatable for credit?
No

Course Components

Lecture
Laboratory

Component Hours, ILUs, and Seats

Lecture:
Contact Hours

ILUs

Seats
Laboratory:
Contact Hours

ILUs

Seats

Total Course Contact Hours

Special Fees

Special Fee
Yes

Type of Fee
Supplies/Materials

Amount
75

Catalog Information

Crosslisted

Course Description
The course focuses strongly on the theory, terminology, application and hands-on industry practices in silicon wafer fabrication and Printed Wiring Board (PWB) fabrication with continued practice in working in a cleanroom. Topics include photolithography, chemical etching, and DC magnetron sputtering. Lab required

Prerequisite
MEMS 132 & ELCT 111

Corequisite
CHMY 171

Concurrent

Course Placement Policy

Topical Outline: Please enter each of the Topical Outline items as a bullet.

- Silicon wafer processing – handling, cleaning, and safe chemical processing including HF acid
- Silicon material science and semiconductor fabrication processes
- Photolithography – Theory, terminology, application, and optimization for both silicon wafers and printed wiring board (PWB)
- Wet chemical etching of PCB and PWB Fabrication and the relation to silicon wafer processing
- Inspection and metrology of photolithographic processed materials including spectroscopy, profilometry, and general visual inspection
- Chemical and material processing including wet chemical etching and plasma etching
- Thin film deposition techniques including sputtering and electron beam evaporation

College Ready Requirement

English

Reading

Math

Course Outcomes and Assessment

Outcome Number:
1

Outcome
Explain terminology, processes, materials, and standards used in the fabrication of integrated circuits, microelectromechanical system sensors, or bare printed wiring boards.

Domain
Cognitive

Assessment Tools
Examination

Assessment Method
Rubric

Benchmark %
70% of students will earn 70% or higher on selected instrument

Benchmark %

Other Benchmark
Corresponding GE Outcomes

C1 English
C3 Science
In1 Critical Thinking

Outcome Number:

2

Outcome

Process a silicon wafer with photolithographic artwork.

Domain

Psychomotor

Assessment Tools

Laboratory exercise

Assessment Method

Rubric

Benchmark %

70% of students will earn 70% or higher on selected instrument
Benchmark %

Other Benchmark

Corresponding GE Outcomes

- C1 English
- C2 Mathematics
- C3 Science
- In1 Critical Thinking

Outcome Number:

3

Outcome

Fabricate a printed wiring board using photolithography and etching techniques that can be soldered as a functional PCB.

Domain

Psychomotor

Assessment Tools

Laboratory exercise
Assessment Method

Rubric

Benchmark %

70% of students will earn 70% or higher on selected instrument

Benchmark %

Other Benchmark

Corresponding GE Outcomes

C1 English
C2 Mathematics
C3 Science
In1 Critical Thinking

General Education/Other

Type of Course

Technical

Core Course Outcomes
Core Course Outcomes

C3 Natural Science: Apply scientific concepts and methods of inquiry.

Infused Course Outcomes

Infused Course Outcomes
In1 Critical Thinking: Employ critical thinking skills in addressing issues and problems.
In2 Communication: Demonstrate competence in verbal and nonverbal communication
In5 Health: Identify behaviors that promote health of the individual

Experiential Learning

Does this course have an experiential component?
No

Suggested Instructional Method(s) and Technique(s)
Lectures
In-lab demonstrations
Laboratory exercises performed individually

State Articulation and Transfer

Transfer Module:

Transfer Assurance Guide and Career Technical Credit Transfer

Accreditation/Licensure/Certification

Does this course prepare or substantially prepare a student for a license or certification?
Note: This section applies to an individual course that may have a certification and/or licensure. (e.g. CPR course)
No

Additional Resources

Additional Resources

Textbooks/OER

Type
Textbook and OER

Required or Optional
Required

ISBN

Title
978-0-387-09511-0

Edition

Copyright Year
2010

Author
Thomas M. Adams, Richard A. Layton

Publisher
Springer New York, NY

URL

Additional Notes
On LCCC Campus, book can be downloaded as a .pdf for free

Other Materials

Required Materials

Optional Materials

Additional Notes

Notes

Rationale

Rationale and Dean's Statement of Support
Attach Additional Support Documentation

Reviewer Comments

Key: 1697

Select any proposals you would like to bundle together for approval. Only proposals you have saved are available to bundle.

Bundle Title:

Course:
Proposal A

Program:
Proposal B