History

- 1. Jul 22, 2018 by Cecilia Balut (cbalut)
- 2. Jul 28, 2018 by Shawna Giovannazzo (sgiovann)
- 3. Sep 16, 2018 by Cecilia Balut (cbalut)

Changes saved but not submitted

Viewing: MEMS 132 : MEMS PACKAGING

Last approved: Sun, 16 Sep 2018 10:55:45 GMT

Last edit: Tue, 09 Aug 2022 20:46:30 GMT

Is this a fast track change? No

Course ID 110659

Subject MEMS - Micro-Electromechanical Systems Course Number 132

Title MEMS PACKAGING

Division Engineering Technologies

Effective Term Spring 2023

Method of Delivery In Person

Typically Offered

© ①

This work is licensed under a Creative Commons Attribution 4.0 International.

The Ohio Manufacturing Workforce Partnership (OMWP) is a collaboration of The Ohio Manufacturers' Association (OMA) and Ohio TechNet (OTN). Established to address Ohio's manufacturing workforce shortage, the OMWP works directly with a statewide network of manufacturing industry sector partnerships and is focused on meeting local employment and skill needs.

This workforce product was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The product was created by the recipient and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership. This product is copyrighted by the institution that created it.

Offered Summer and Spring

CIP Code

15.9999 - Engineering/Engineering-Related Technologies/Technicians, Other.

SOC Code

Standard Occupational Classification (SOC)	Standard Occupational Classification Title
NO MATCH	NO MATCH
Course Level Technical	
Is this an international course? No	
Grading Basis Graded	
Grading Procedures	
Graded Element	% of overall course grade
Laboratory Exercises	40

		0	
Laboratory Exercises	40		
Assignments / Quizzes / Exams	40		
Final Exam	20		

Upload Sample Syllabus

Course Hours

Minimum Credit Hours 3
Maximum Credit Hours 3
Is this course repeatable for credit?
No

Course Components

Lecture Laboratory

Component Hours, ILUs, and Seats

Lecture: Contact Hours 2 ILUs 2 Seats 12 Laboratory: Contact Hours 2 ILUs 1.7 Seats 12 Total Course Contact Hours 4

Special Fees

Special Fee Yes

Type of Fee Credit Lab Amount 75.00

Catalog Information

Crosslisted

Course Description

The course focuses on microelectronic integrated circuit (IC) and chip-on-board packaging. The student will be introduced to common packaging techniques and equipment used in the industry such as epoxy die attach, thermosonic wire bonding of 0.001" diameter wire, encapsulation, and microscope metrology.

Prerequisite MEMS 122

Corequisite None

Concurrent None

Course Placement Policy

None

Topical Outline: Please enter each of the Topical Outline items as a bullet.

- Introduction to Microelectronic Packaging
- Application of MEMS vs. Microelectronic devices in the packaging industry
- Package types:
- Die Attach
 - General methods, materials, and quality standards
 - Equipment operation: Manual and semi-auto epoxy die attach
- Thermosonic wire bonding
 - Theory, general methods, materials, and equipment terminology
 - Wire bond metallurgy and intermetallic formation
 - Ball vs. Wedge bonding:
 - Equipment operation: Semi-auto thermosonic Au ball bonding
- Equipment operation: Semi-auto thermosonic Al/Au wedge bonding
- Wire bond Pull and Shear Testing
 - methods and quality metric
 - Equipment operation: Semi-auto pull & shear tester
- Encapsulation
- Reliability testing via MilSTD 883

College Ready Requirement

English

Reading

Math

Course Outcomes and Assessment

Outcome Number:

1

Outcome

Explain terminology, processes, materials, and standards used in the manufacturing, testing, and application of microelectronic and MEMS packaging.

Domain

Cognitive

Assessment Tools Examination

Assessment Method

Rubric

Benchmark %

70% of students will earn 70% or higher on selected instrument

Benchmark %

Other Benchmark

Corresponding GE Outcomes

C1 English C2 Mathematics C3 Science In1 Critical Thinking

Outcome Number:

2

Outcome

Assemble a functional Chip-on-Board PCB with sensors using standard packaging and PCB manufacturing equipment, processes, and materials.

Domain

Psychomotor

Assessment Tools

Laboratory exercise

Assessment Method

Rubric

Benchmark %

70% of students will earn 70% or higher on selected instrument

Benchmark %

Other Benchmark

Corresponding GE Outcomes

C1 English C2 Mathematics C3 Science In1 Critical Thinking

Outcome Number:

3

Outcome

Operate a thermosonic ball bonder quickly and effectively including the full setup for wire bonding 0.001" diameter wire.

Domain

Psychomotor

Assessment Tools

Laboratory exercise Skills Assessment

Assessment Method

Item Analysis Rubric

Benchmark %

70% of students will earn 70% or higher on selected instrument

Benchmark %

Other Benchmark

Corresponding GE Outcomes

C1 English C3 Science In1 Critical Thinking

General Education/Other

Type of Course

Technical

Core Course Outcomes

Core Course Outcomes

Infused Course Outcomes

Infused Course Outcomes

In1 Critical Thinking: Employ critical thinking skills in addressing issues and problems.

Experiential Learning

Does this course have an experiential component? No

Suggested Instructional Method(s) and Technique(s) Lectures: Explanation of concepts and applications Demonstration: Presentation of analysis techniques Lab Exercises: Conducting lab experiments

State Articulation and Transfer

Transfer Module: None

Transfer Assurance Guide and Career Technical Credit Transfer

Accreditation/Licensure/Certification

Does this course prepare or substantially prepare a student for a license or certification? Note: This section applies to an individual course that may have a certification and/or licensure. (e.g. CPR course)

Additional Resources

Additional Resources

Other Materials

Required Materials Materials/documentation provided by the instructor from a variety of current sources.

Optional Materials

Additional Notes

Notes

Rationale

Rationale and Dean's Statement of Support

Attach Additional Support Documentation

Reviewer Comments

Key: 1696

Select any proposals you would like to bundle together for approval. Only proposals you have saved are available to bundle.

Bundle Title:

Course: Proposal A Program: Proposal B