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Chapter 19 Programming the PID Algorithm 
 

 

Introduction 
 

The PID algorithm is used to control an analog process having a single control point and a single 

feedback signal.  The PID algorithm controls the output to the control point so that a setpoint is 

achieved.  The setpoint may be entered as a static variable or as a dynamic variable that is 

calculated from a mathematical operation. 

 

For many years, the PID algorithm was not accepted as a function suitable for a PLC.  It was 

included in a DCS (Distributed Control System) or configured from a number of stand-alone PID 

controllers.  However, as PLC prices continued to fall during the 1980’s and later and more 

economical HMI systems were developed for the PLC, PLCs became more accepted as PID 

controllers.  In fact, because PLCs have undercut the cost of competing systems, DCSs and other 

PID controllers have been forced to drop prices dramatically or no longer remain competitive.  

An early hybrid design was introduced into the Allen-Bradley 1771 I/O family including 2 PID 

stand-alone controllers attached to a single I/O slot and executing the PID algorithm from the 

controller in the I/O slot.  Newer control schemes have the PID algorithm executing in the PLC 

with other programs and controlling complicated processes with good success. 

 

Chapter 19 uses the PID block to control a process.  This chapter looks at the PID block from a 

view of discovery, mine.  The group I worked for in industry was a controls group and there was 

a wall between the controls group and the instrumentation group.  We worked with PLCs and 

they worked with PID controllers.  They designed P&ID Diagrams.  They worked with analog 

and we worked with digital systems. After accepting a teaching position, I was asked by a local 

company to help install a PID block in a process.  I accepted (for money).  That started an 

interest I had in process control that I have continued to this day.  The chapter is organized 

around the path I took in discovery of how to successfully implement the PID algorithm in 

control processes. 

 

The chapter describes the SLC PID block followed by the CompactLogix processor as well as the 

Siemens 1200 and its implementations of the PID function.  Using these various PLC 

configurations demonstrates differences between the newer PID blocks and the SLC PID block.  

The SLC processor was integer-based.  Integer-based blocks have the disadvantage that scaling 

must be used to convert numbers to more meaningful real values.  Scaling adds complexity to the 

program that becomes transparent with a floating-point PID block.  More sophisticated PID 

blocks such as is available in the PLC/5 and ControLogix processors as well as Siemens allow 

floating-point calculations.  These more robust PID blocks also provide more sophistication in 

their functionality.  All PID blocks are not created equal. 

 

But First, a Primer on PID - Fundamentals of Closed Loop Control 
 

Closed Loop Control Tasks 

 

"Closed loop control is a process where the value of a variable is established and maintained 

continuously through intervention based on measurements of this variable. This generates a 

sequence of effects that takes place in a closed loop -the control loop- because the process runs 

based on measurements of a variable that is influenced in turn by itself.”  This variable that is to 

be controlled is measured continuously and compared with a setpoint variable.  The difference or 

error between these two variables determines an output that hopefully controls the input variable 

satisfactorily.  An equation that is explained below is used to determine the best output. 
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The following diagram gives an over-all picture of what a PID controller sets out to accomplish.  

The Setpoint is the desired value of a variable.  In order to achieve this Setpoint (SP), a controller 

is inserted in a process with two main parts – a Manipulating Element and a Process.  The 

manipulating element may be a control valve or an inverter controlling motor speed. The process 

is usually unknown mathematically.  That said, it is always good to strive to understand the 

mathematical equations that drive the process as much as possible.  Fact is, it is not possible in 

most cases. 

 
 

       Fig. 19-1  A Block Diagram of a Single PID Block Controller 

 

The controller can be looked at as a one-eyed device with feed-back from the process with a 

three element equation to try to manipulate the process to achieve the setpoint.  The three 

elements are P (Proportional), I (Integral) and D (Derivative.  The feedback comes from a 

controlled variable through a transmitter (measuring device) which outputs a signal called the 

controlled variable (Cm) or process variable (PV). 

 

 
Proportional Controller (P-Controller) 
 

In the case of P-controllers, the output of the controller is proportional to the error.  The output of 

the controller goes to zero if the error is zero.  This never is the case and there is always an offset 

between the desired value (Setpoint) and the process value.  The proportional pressure regulator 

sketched in the figure below compares the power FS of the setpoint spring with the power FB that 

the pressure P2 generates in the spring-elastic metal bellows.  If the forces are off balance, the 

lever rotates around the pivot point D.  The valve position changes and accordingly the pressure 

P2 changes until a new balance of forces is established. 

 

To keep the error as small as possible, a proportional factor as large as possible is selected. This 

has the effect of quicker response to a change.  There can be over-shoots however and instability 

can occur.  The P-controller needs help in solving the two problems of potential overshoot and 

not being able to move to the setpoint but only to an off-set of the setpoint.   

 

It is interesting to note that early PID controllers were built entirely from mechanical components 
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– no electrical components at all.  The P-controller below is an example of a mechanical only 

controller with only the P component. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐹𝑙𝑜𝑤 ≈  √𝑃2 −  𝑃1 

 

𝑒(𝑒𝑟𝑟𝑜𝑟) = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐹𝑙𝑜𝑤 − 𝑆𝑒𝑡 𝑃𝑜𝑖𝑛𝑡 

 

𝑦(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝐾𝑝 ∙ 𝑒 

  

 

The diagram below shows the possible behavior of the P-controller: 

 

Setpoint

Actual

value

Deviation

Control

variable

time
 

 

 

The problem of continuous deviation is solved best with an integral controller. 

 

Integral Controller (I-Controller) 
 

Integrating controllers are used to completely correct the error from the P-controller.  Only when 

the Setpoint and controlled variable are equal is the control system in a steady state. 

 

The mathematical formulation of this integral behavior is as follows: 

 

Metal bellows 

Setpoint spring 

Fig. 19-2 

Fig. 19-3 
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𝑦 = 𝐾𝑖 ∫(     ) 𝑤𝑖𝑡ℎ 𝐾𝑖 =
1

𝑇𝑛
  

 

How fast the manipulated variable rises (or falls) depends on the error and the integration time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
PI-Controller 
 

The PI-controller is a type often used in practice. It results from connecting a P-controller and an 

I-controller in parallel. When laid out correctly it unites the advantages of both controller types 

(stable and fast, no permanent system deviation). 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

The behavior with respect to time is identified by the proportional coefficient Kp and the reset 

time Tn. Because of the proportional component, the manipulated variable responds immediately 

to every system deviation e, while the integral component takes effect only in the course of time.  

Tn represents the time that passes until the I-component generates the same amplitude of flow as 

occurs immediately because of Tn to increase the integral component. 

   Block diagram      
 

Block diagram 

Fig. 19-4 

Fig. 19-6 

Fig. 19-5 

Eq. 19-1 
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Differential Controller (D-Controller) 
 

The D-controller generates its manipulated variable from the rate of change of the system 

deviation, and not, as the P-controller, from its amplitude. For that reason, it responds 

considerably faster than the P-controller.  Even if the deviation is small, it generates (looking 

ahead) large amplitudes of flow as soon as an amplitude change occurs. However, the D-

controller does not detect permanent deviations, because no matter how large it is, its rate of 

change equals zero. For that reason, the D-controller is used only rarely by itself in practice. 

Rather, it is used jointly with other control elements, usually in connection with a proportional 

component. 

 

PID Controller 
 

If we expand the PI controller with a D-component, the universal PID controller is created. As in 

the case of the PD controller, adding the D-component has the effect that, if laid out correctly, 

the controlled variable reaches its setpoint sooner and its steady state faster.  

 
 

 

𝑦 = 𝐾𝑝 ∙ 𝑒 + 𝐾𝑖 ∫ 𝑒 ∙ 𝑑𝑡 + 𝐾𝐷
𝑑𝑒

𝑑𝑡
   with  𝐾𝑖 =

𝐾𝑝

𝑇𝑛
, 𝐾𝐷 = 𝐾𝑝 ∙ 𝑇𝑣  

 
Eq. 19-2  PID Equations 

 
The following example gives an analytical view of an Output (V) with PI control. We will leave D 

alone.  First, observe the relationship of Output to only the Integral term: 
 

Fig. 19-7 
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Fig. 19-8a  Graph of PI Error/Output 

 

Next, see the response for a PI controller: 
 

 

Fig. 19-8b  Graph of PI Error/Output 
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With values assigned for the PI controller, the output can be calculated as time increases from 

t=0.  We will not include the D or Derivative component since this variable dramatically 

complicates the example. 

 

We assign numbers to the variables in the equation and observe the output.  Let:  

 

P  = 2 

1/Tn = .02 s-1 

V0 = 32% 

We use the formula for the PI controller: 

𝑣 = 2𝑒 + (2)(0.02) ∫ 𝑒 𝑑𝑡 + 32
𝑡

0

 

Starting at t = 0,  

𝑣 = 2 ∗ 0 + (2)(0.02) ∫ 𝑒 𝑑𝑡 + 32
0

0

= 32 

 

Next, at t = 20,  

𝑣 = 2 ∗ 10 + (2)(0.02) ∫ 𝑒 𝑑𝑡 + 32
20

0

= 20 + 0 + 32 = 52 

Then, at t = 70, 

𝑣 = 2 ∗ 10 + (2)(0.02) ∫ 𝑒 𝑑𝑡 + 32
70

0

= 72 

This may be a little harder to see but look at the rectangle from 20 to 70.  It is 10 high.  Also, 

look at the time.  It is 50. The integral is the sum over time of the error or the area under this 

curve, or 2x.02x50x10.  This gives 20 to add to the total or 52+20 = 72.   

 

Completing the graph for the 100 seconds would look like the following: 

 

Eq. 19-3 

Eq. 19-4 
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Fig. 19-8c  Graph of PID Output 
 

Using the PID Algorithm to Control a Process          
 

The first PID algorithm implemented by this instructor was the following.  This was a dog-food 

manufacturing facility.  The basic process for making the dog food is the extruder whose 

function is to make dog food from dry ingredients along with some steam, fat, and other wet 

ingredients.  As the motor speeds up, more ingredients are to be added and as the motor slows 

down, the added ingredients are to slow down as well.  The PID block will be used to add one 

wet ingredient, fat.  

Tank of Liquid Fat

Fat

Control Valve

Other Raw 

Ingredients

Extruder Motor Extruder Dog Food

Kibbles ‘n  Bits

 
 

      Fig. 19-9  Extruder/Mixing System making Dog Food 

 

Since the extruder motor speed runs the feed speeds for the other ingredients in the process, its 

speed sets the master speed for the process.  All other feed speeds will be a percent of the motor 

speed. 

 

Control signals for the Dog Food Control include: 
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Motor Speed

Motor Speed Motor Speed Motor Speed Motor Speed

Feed Rate
Ingredient a

Feed Rate
Ingredient b

Feed Rate
Ingredient c

Feed Rate
Fat

 
 

          Fig. 19-10 Cascade or Remote Signal 

 

When the PID algorithm is in remote, the motor speed furnishes the value for the setpoint.  

Variables are usually multiplied by a constant with motor speed * multiplier giving the value of 

the setpoint when the local-remote switch is in remote. 

 

It was discovered that the PID algorithm needed to be designed to operate in one of three modes: 

Manual, Auto Local and Auto Cascade.  This was necessary since the start-up of the dog-food 

process involved manipulation of the Fat valve.  The valve was checked out to see that it 

operated freely within the range of the signal by sending a signal through the Manual Cv path 

shown below.  Then the algorithm for the PID solution was checked out and appropriate 

variables were found for P, I and D using the Local Setpoint.  Then the process was turned to full 

auto – or remote or cascade to follow the process of the extruder.  All three stages were necessary 

and useful to achieve a successful start-up and running the process. 

 

switch in remote or cascade

Setpoint in PID

PID Solver

Cv or Output

Flow Valve to 
Proces Variable

Manual Cv

Motor Speed

Multiplier Local Setpoint

switch in local

switch in auto switch in manual

Signal to Valve
 

 

     Fig. 19-11  Motor Speed Settings for Ingredient Adds 
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The SLC Processor Used for the Extruder 
 

In its simplest form, the SLC PID block is used as a single block with no input contacts and 

surrounded by only two SCP blocks.  This PID instruction is located in Ladder 2.  The SCP block 

is configured to retrieve a numerical value from the analog input channel, linearly scale the input 

and move the resultant value to the PID block.  The input is a 4-20 mA signal from a flow 

transmitter.  The output is a 4-20 mA signal to a variable flow valve.   

 

The flow transmitter is the best way to find the actual flow.  One could calculate the height of the 

liquid in the tank, the flow resistance of the pipe, the viscosity of the liquid and the flow at the 

valve for various pressures associated with these variables.  But, it is easier and more accurate to 

use the pulsed input from the flow meter.  The pulses are converted to 4-20 mA through an 

electronic circuit and then fed to the PLC. 

 

 

  SCP – Scale with Parameters

  Input

  Input Min

  Input Max

  Scaled Min

  Scaled Max

  Ouptut

  PID

  Control Block

  Process Variable

  Control Variable

  Control Block Length

  SCP – Scale with Parameters

  Input

  Input Min

  Input Max

  Scaled Min

  Scaled Max

  Output
 

 

  Fig. 19-12 Simple Program of PID for SLC Processor 

 

In the first SCP instruction, values found in the Input Min and Input Max of the SCP instruction 

are from the I/O card.  The engineer must first decide which I/O card to use and then find the 

proper lower and upper limits from the literature on the card to enter values in the SCP 

instruction. 

 

In this case, the analog card selected is the 1746-NIO4I Ser. A from Rockwell/Allen Bradley.  

This card is a combination card with 2 analog inputs and 2 analog outputs.  From the web, select 

I/O Analog Modules, Analog I/O Modules for SLC 500 Programmable Controllers – Technical 

Data.  Then select 4 Channel Module Configuration, 4 Channel Module Wiring, and 4 Channel 

Module Specifications to find the choices available for Analog Inputs and Analog Outputs. 
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In the section describing 4 Channel Module Specifications are found the following Channel Data 

sheets: 

  

 
Input Type Signal Range Engineering Units EU Scale 

+/- 10 Vdc -10.25 to + 10.25 Vdc -10250 to + 10250 1 mV/step 

0 to 5V dc -0.5 to +5.5 Vdc -500 to +5500 1 mV/step 

1 to 5V dc 0.5 to 5.5 Vdc 500 to 5500 1 mV/step 

0 to 10 Vdc -0.5 to +10.25 Vdc -500 to +10250 1 mV/step 

0 to 20 mA -0.5 to +20.5 mA -500 to +20500 1.0 uA/step 

4 to 20 mA 3.5 to 20.5 mA 3500 to 20500 1.0 uA/step 

+/- 20 mA -20.5 to +20.5 mA -20500 to +20500 1.0 uA/step 

0 to 1 mA -0.05 to 1.05 mA -50 to + 1050 1.0 uA/step 

    

  Fig. 19-13 Channel Data Word Values for Engineering Units 

 

  
Input Type Signal Range NI4 Data Format 

+/- 10Vdc -10.00 to +10.00 Vdc -32768 to +32767 

0 to 5Vdc 0.0 to 5.00 Vdc 0 to 16384 

1 to 5 Vdc 1.00 to 5.00 Vdc 3277 to 16384 

0 to 10 Vdc 0.0 to 10.00 Vdc 0 to 32767 

0 to 20 mA 0.0 to 20.0 mA 0 to 16384 

4 to 20 mA 4.0 to 20.0 mA 3277 to 16384 

+/- 20 mA -20.0 to +20.0 mA -16384 to +16384 

0 to 1 mA 0.0 to 1.00 mA 0 to 1000 

 

  Fig. 19-14 Channel Data Word Values for Scaled Data 

 

Using the value 4 to 20 mA from the Input Type column, the value in Engineering Units is 3277 

min to 16384 max.  These values are entered in the SCP instruction to scale the variables 

correctly.   

 

  SCP – Scale with Parameters

  Input

  Input Min 3277

  Input Max            16384

  Scaled Min

  Scaled Max

  Ouptut
 

 

The scaled min and max values that are sent to the PID’s process variable are found in the setup 

documentation of the PID block.  The min value is 0 and the max value is 16383.  A location 

must be selected.  In this case, the process variable or PV is selected to be N10:28.  It is 

advisable to keep the PID block data separated from other integer data.  In order to do keep the 

data for the PID separated, the data file N10 was created to handle the PID data. 

 

The input address may also be selected.  Remember the value is I:s.w where s is the slot number 

and w is the relative word address down the card.  In this case, the slot address chosen is 1 and 

the w or word address is 0, the first analog input point on the card.  The other option for the input 

in slot 1 is I:1.1.   

 

 

 

Fig. 19-15 
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  SCP – Scale with Parameters

  Input I:1.0

  Input Min 3277

  Input Max            16384

  Scaled Min       0

  Scaled Max            16383

  Output           N10:28

  PID

  Control Block

  Process Variable      N10:28

  Control Variable

  Control Block Length       23

 
 

   Fig. 19-16 Moving the Process Variable into the PID Block 

 

The control block address is chosen.  This address requires 23 contiguous words reserved in an 

integer table.  The block N10:0 (through N10:22) was chosen.  Also reserve a location for the 

control variable or output of the PID function.  N10:29 was chosen. 

 

This control variable or output is then sent to the analog output card.  Scaling again must be 

chosen.  The min for the PID output is 0 and the max is 16383.  These are the same values as are 

used for the PID input.  To use the entire range of values for a PID input or output, choose the 

range 0 to 16383.  Always strive to use the entire range of the PID block when programming an 

integer PID block.  This gives the greatest accuracy. 

 

The scaled output must be ranged to fit a 4 to 20 mA analog output card.  Use the values as were 

found in the reference manual, 6,242 min and 31,208 max.  Use the first output point on the same 

card as the input.  Its slot number is O:1.0.  Now, the PID and two SCP blocks can be finished.   

 

  SCP – Scale with Parameters

  Input I:1.0

  Input Min 3277

  Input Max            16384

  Scaled Min       0

  Scaled Max            16383

  Output           N10:28

  PID

  Control Block

  Process Variable      N10:28

  Control Variable       N10:29

  Control Block Length       23

  SCP – Scale with Parameters

  Input         N10:29

  Input Min      0

  Input Max           16383

  Scaled Min                  6242

  Scaled Max               31208

  Output            O:1.1

 
      Fig. 19-17 Moving the Variables Into and Out of the PI 
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Wiring a 4-20 mA Current Loop 
 

Handling wiring and other hardware issues is found from information in the instruction manual 

for the module.  In the case above, the card used was the 1746-NI04I module from Allen-

Bradley.  Look specifically in the chapter on installation and wiring. 

 

In addition to the actual wiring diagram for the application, important information including dip 

switch settings should be noted.  If possible, all dip switch settings should be copied to the 

installation drawing for the card or added as notes to the schematic drawings.  In the case of the 

1746-NI04I card, no dip switches were found.   

 

To wire a 4-20 mA control circuit for a PLC input, wire a loop with the power supply, 

transmitter, and PLC input.  To wire a 4-20 mA PLC output, wire a power supply, valve and 

output.  From the manufacturer's diagram, it should be noted whether the 4-20 mA output 

requires loop power or the analog output card provides loop power.   

 

For the analog input, the transmitter varies the resistance to the PLC input so that the current 

ranges from 4 mA for no flow to 20 mA for maximum flow.  The transmitter “borrows” enough 

voltage from the 24 V dc to activate electronics inside the transmitter.  The voltage drop across 

the transmitter does not affect the current range of the loop.  The PLC analog output varies the 

resistance to the control valve in a similar manner. 

 

 

Transmitter-

Variable Resistor

24 V dc

PLC 

Analog 

Input

4-20 mA

 
 

4-20 mA Analog Input – Current Loop 

   

PLC Analog Output

24 V dc

(may be 

external)

Control 

Element 

(valve)

4-20 mA
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PLC Analog Output24 V dc

(may be 

internal)

Control 

Element 

(valve)

4-20 mA

or

 

Fig. 19-18 4-20 mA Analog Output – Current Loop 

 

            

In the case of output cards, care must be taken to find whether or not the 24V dc power supply 

should be added to the loop.  The drawing from the installation manual provides direction here.  

From  the figure below, note that there is no power supply needing to be added in the output 

current loop diagram for this specific card (NI04I).   

 

The figure below shows the catalog information for wiring this card.  In fact, the analog output 

does not need a power supply since the output furnishes this power internally.  The term "analog 

source" for the input implies inclusion of the 24V power supply.  Load for the output implies no 

external power supply.  Note the jumpers installed for inputs not used. 

 

 

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

In 0+

In 0-

ANL COM

In 1+

In 1-

ANL COM

not used

Out 0

ANL COM

not used

Out 1

ANL COM

Load 

(valve)

jumper

unused 

inputs

+

analog 

source

-

do not jumper 

unused outputs

 

Fig. 19-19    4-20 mA Analog I/O – Current Loop (NI04I) 

 

Configuring the SCP and PID Instructions for the SLC 
 

The description of the SCP instruction mentions that the inputs may be integer, floating point, 

immediate data values, or indirect referenced values.  The minimum and maximum values for 
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both input and output form a range over which the variables are scaled.  The instruction solves 

the equation y = mx + b without the user responsible to calculate actual values for ‘m’ and ‘b’. 

 

Care must be taken to keep the program performing in an acceptable manner if the input value is 

less than the card minimum value.  The scaled output value should continue to solve the equation 

and the output value should scale to less than the minimum value of the instruction.  The same 

result should also occur if the value exceeds the maximum. 

 

In the Instruction Help description, the PID block is described: 

 
“This output instruction is used to control physical properties such as temperature, pressure, liquid level, 
or flow rate of process loops. 
 
The PID instruction normally controls a closed loop using inputs from an analog input module and 
providing an output to an analog output module as a response to effectively hold a process variable at a 
desired setpoint.” 

 

The PID instruction can be chosen to be operated in either the timed mode or the STI mode. In 

the timed mode, the instruction updates the output algorithm periodically at a rate selected in the 

block.  In the STI mode, the PID instruction is placed in an STI (Software Timed Interrupt) 

subroutine. The PID block updates the PID algorithm each time the STI subroutine is called.  A-

B points out that the STI time interval and the PID loop update rate must be equal in order for the 

equation to perform properly. The suggested time duration for the STI or timed mode is .1 

second. 

 

A Setup screen is provided on the PID instruction. 

 

  PID

  Control Block

  Process Variable      N10:28

  Control Variable       N10:29

  Control Block Length       23

setup screen

 

          Fig. 19-20 Example PID Instruction 
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From the A-B Text and the Instruction Help Screen is shown the Block Layout of the PID 

Instruction: 
 

15     14     13     12     11     10      9      8      7      6      5      4      3     2     1      0  
Word 0     EN              DN   PV    SP     LL     UL   DB   DA   TF   SC    RG  OL  CM AM  TM 
Word 1  PID Sub Error Code (MSB) 
Word 2  Setpoint SP 
Word 3  Gain Kc 
Word 4  Reset Ti 
Word 5  Rate Td 
Word 6  Feed Forward Bias 
Word 7  Setpoint Maximum (Smax) 
Word 8  Setpoint Minimum (Smin) 
Word 9  Deadband 
Word 10  INTERNAL USE – DO NOT CHANGE  
Word 11  Output Max 
Word 12  Output Min 
Word 13  Loop Update 
Word 14  Scaled Process Variable 
Word 15  Scaled Error SE 
Word 16  Output CV% (0-100%) 
Word 17  MSW Integral Sum 
Word 18  LSW Integral Sum 
Word 19  Altered Derivative Term (Low word) 
Word 20  Altered Derivative Term (High word) 
Word 21  Time of Last Update 
Word 22  Setpoint Old Value    

 

 

The table above corresponds to N10:0 through N10:22 found in our example above.  Word 0 

(N10:0) is used for bit control storage.  For example, bit 1 is the AM or Auto/Manual bit.  When 

bit 1 is on, the block is in manual.  When bit 1 is off, the PID block is in auto.  The address for 

AM in is N10:0/1.  Words 1 through 22 are used for constants and variables used in the solution 

of the PID algorithm. 

 

The PID Setup Screen shown below describes variables found in the table above that may be 

changed from the programming software. 

 
Solving the PID Block 
 

Once the analog value of the process variable is mapped from the SCP instruction to the PID 

block, the PID block solves the equation for the Control Variable (CV) or Output.  A more 

thorough explanation of how the output is achieved may be found in a text on control systems.  

Equations vary but the three most common equations are given later in the chapter.   

The PID block has two analog inputs.  One is the PV or process variable and the other is the SP 

or setpoint.  The setpoint is manually entered into the PID block.  This may be done through the 

PID Setup screen, through an HMI such as PanelView, or through a program statement (a MOV).  

If the SP is entered manually through the program, the SP is considered static and should never 

be changed by operator control since an operator is not generally considered reliable enough to 

enter variables through the RSLogix500 Setup Screen.   
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The PID Setup screen is pictured below.  The setup screen allows the engineer or technician full 

capability of modifying the PID block. 

 

 
 

 

 

The SP may be entered through the PID Setup screen.  The PV is entered using the SCP 

instruction.   

 

From the A-B Instruction Reference Manual: 

 
“Process Variable PV is an element address that stores the process input value.  This address 
can be the location of the analog input word where the value of the input A/D is stored.  This value 
could also be an integer if you choose to pre-scale your input value to the range 0 to 16383.” 

 

The output is referred to as the CV or Control Variable.  It is described in the same manual as: 
 

“Control Variable CV is an element address that stores the output of the PID instruction.  The 
output value ranges from 0 to 16383, with 16383 being the 100% ‘on’ value.  This is normally an 
integer value, so that you can scale the PID output range to the particular analog range your 
application requires.” 

 

The PID block is very much like a black box function with inputs entering and outputs leaving 

the block.  The block diagram for the PID block in auto is: 

 

Fig. 19-21  SLC PLC Startup Block in RSLogix 500 
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In Auto:

(AM bit = 0)
Process Variable Setpoint

Control Variable

or Output

 
           Fig. 19-22  Using Setup Screen 

 

The PID algorithm is solved while the block is in auto.  Auto is determined by the status of the 

AM bit.  When AM = 0 the operation is automatic.  When AM = 1, the operation is manual.   

 

The PID algorithm does not output a value for the PID block if the block is in manual.  It is as if 

the block has been manually disengaged.  The PV or SP may change and the output stays at its 

last value unless a new value is written into the CV location.  The CV location may be over-

written in manual.  In auto, the PID block constantly writes the value to the CV. The range of the 

CV is from 0 to 16383.  Writing to the CV allows the user to manipulate the valve in the manual 

mode.  
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In Manual:

(AM bit = 1)

Process Variable 

may be entered 

but equation is not 

being executed

Setpoint may be 

entered but 

equation is not 

being executed

Control Variable

or Output

1 must be written to 

AM bit when in Auto

CV may be written to 

from the program or 

fram an HMI
 

         Fig. 19-23   Additional Use of Setup Screen 

 

Another bit that must be set correctly for the PID block to work is the Control (CM) bit.  It 

determines whether the error term E = SP – PV or E = PV – SP.  If the CM bit is set incorrectly, 

the valve will quickly go to full on (100%) or full off (0%).  This bit is never to be set by an 

operator.  Use the PID Setup screen to set it. The bit is not to be changed after it is set in the 

initial configuration of the auto mode.  

 

The simple PID algorithm from the SLC processor demonstrates many important steps in 

implementing the PID block successfully.  First, the input must be correctly signal conditioned 

and the output signal conditioned as well.  The wiring must be correct.  The PID block must be 

correctly configured including all min and max values plus all tuning parameters.  Then the 

engineer can control the program either in manual or auto from the programming helps menu.  

The PID block must be placed in a block that executes on a clocked interrupt or the PID block 

itself must be programmed to execute on a timer in the main or OB1 block. Either method works 

but the preferred method is to program the PID algorithm in a separate timed interrupt block.  

Also the data must be guaranteed to be ‘fresh’.  That is, the data that is used for the algorithm 

must have been gathered recently.  This may be as recent as an immediate read or from a scanned 

card that reports to the main CPU on a regular basis.  This data must be guaranteed to have been 

read less than 10% of the time since the last execution of the PID block.  This is a rule of thumb 

– 10%. 

 

As can be seen, the PID algorithm, to be set up properly and run in the PLC requires several 

steps.  The inputs and outputs must be scaled properly, modes must be considered and 

programmed.  A start-up screen is used to set up the PID block and input parameters such as P, I, 



 Ch 19 PID Block  20 

 

D, and other limits as well as run the PID block to observe stability.  Later we will be introduced 

to an auto-tune feature with the Siemens PLC but for now, the P, I, and D variables must be 

guessed. Finally, a program is written using the PID block to control the output variable y.  A 

discussion of how the interface to the operator is discussed ater.  This interface is commonly 

referred to as the faceplate, a term used from the original PID controllers which were stand-alone 

controllers, each with its own interface (faceplate). 

 

Faceplates of some stand-alone PID controllers are shown below.  These include the Red Lion 

stand-alone TCU controller and the Honeywell stand-alone controller faceplates. 

Red Lion PID Control

Faceplate

Honeywell UDC1000/1500 PID Control 

Faceplate
 

     Fig. 19-24   Faceplates of Popular PID Stand Alone Controllers 

 

Using the PID Algorithm to Control a Process – Second Experience 

Some time after the first experience with the dog food PID block, another company inquired if I 

was interested in aiding their efforts with programming a glass furnace.  I was available and 

interested.  The process included converting the entire program from Allen-Bradley to Modicon.  

I was familiar with both languages so it was a good fit for me to help.  In the process, I learned 

much about how PID blocks were used to control large processes.  The basic algorithm for each 

zone of the furnace and forehearth used three PID blocks. 

 

Many systems used in process control require a number of PID loops working together.  In the 

example of the dog food extruder, the system would have included a PID controller for each 

ingredient.  In general, each control element requires a PID block. 

 

In the case of temperature control with gas and oxygen combustion, temperature is a PID block 

as well as gas and oxygen flow.  The interaction of temp, gas and air are shown below: 
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Temperature

Controller

Gas

Controller

Oxygen

Controller

Temp PV
Temp SP

Gas PV

Gas SP Oxygen SP

Oxygen PV

Gas CV Oxygen CV

 
Fig. 19-25   Layout of PID Controllers for Gas Burner in Furnace 
 

This algorithm controls the combustion for a furnace or section of a furnace.  Temperature 

Setpoint may come from a number of sources.  The local SP may come from an entry from an 

operator.  Setpoints may also be calculated using a formula for best performance.  Setpoints from 

a formula would be considered as remote setpoints in the temperature PID loop. 

 

This experience was an introduction to design of more sophisticated HMI designs.  This included 

faceplates.  Commonly used tags in the HMI are: 

 

      Auto/Manual  

      Setpoint 

      Process Variable 

      Output (CV) 

      Error (Deviation)  (May be on restricted access page.) 

      Deadband    (May be on restricted access page.) 

      Gain, Reset, Rate  (May be on restricted access page.) 

 

Mode switches such as Auto/Manual are included in the PID block.  Other modes normally used 

but not part of the SLC PID block include: 

 

        Local/Remote 

        Maintenance 

 

In Local, the operator is able to change the setpoint manually and verify the output’s response 

while the PID loop is in auto. 

 

In Remote, the process (program) sets the SP and the PID loop responds to the changes.  The PID 

loop is in auto mode in both local and remote modes.  Remote mode is referenced as Cascade 

mode by some PID controller manufacturers. 

 

In Maintenance mode, the loop is in manual and any variable can be changed from the operator 

station.  This mode should be password protected. 

 

A faceplate may be drawn on the HMI similar to the one below.  This faceplate is typical for a 

system of PID loops controlling a process. 
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The triangles on the left and right side of the bar graphs are used to add or subtract 5% or 1% of 

the SP or CV.  They provide a quick method to adjust SP or CV to get to a desired number.  The 

more exact approach is to enter a number in the data box for either SP or CV.  This approach is 

slower to implement than the method of touching a triangle when making small changes. 

 
Fault Circuits For PID Used in Glass Melting Application 
 

Faults occur at different levels in the program and require a variety of responses.  Some types of 

faults should shut the process down. Shutting down may require that valves turn off.  Many 

times, to shut down automatic operation is desired and the valves are to stop moving, staying in 

the same position.  If the desire is to move from Auto to Manual, the bit in the PID algorithm 

labeled AM must be changed from 0 to 1.  The bit is set to 0 in Auto and 1 in Manual.  The fault 

contact represents various faults that can harm the process if the PID algorithm is allowed to 

continue in auto.  

 

Two levels are present in most processes.  As with the dog food application, the process is 

capable of being run in remote or local for both automatic modes or in manual.  In a hierarchical 

picture, remote mode is favored over local mode and the manual mode is the least desirable mode 

to run the process.  This may be pictured as: 
 

 

Bit B3/x on 

Bit B3/y on 

 

 

Bit B3/x off 

Bit B3/y on 

 

 

     Bit B3/x off 

     Bit B3/y off 

 

Bit B3/x is the Remote Control Bit 

Bit B3/y is the Auto/Manual Control Bit 

Fig. 19-26 

Remote Auto 

 Local Auto 

 Manual (Local) 

Most  

Desired 

Least  

Desired 

Fig. 19-27 
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Note that when the PID block is in auto, the control bit is on.  A second bit must be programmed 

to reverse the status of this bit to turn off the AM bit in the PID block to correctly run the PID 

block in the Allen-Bradley PID block. 

 

One of the control button types in PanelView is ideal to program the Remote/Local and 

Auto/Manual layout for the PID block.  It is the Multistate Button.  It was discussed in Ch. 15 – 

HMI. 

 

Multistate buttons are used for remote/local and auto/manual so one button can be used instead of 

two buttons.  Most graphical applications encourage the use of a single button as opposed to two 

separate buttons.  Using the multistate button provides a single button with toggle functionality.  

Multistate buttons also respond to program logic in the PLC and will turn on or off with logic 

internal to the program. 

 

Faults that move the operation from remote to local are different than faults that move the 

operation from automatic to local.  Always, the option most highly sought is for the operation to 

run in remote.  However, if a fault occurs in the process but not necessarily in the individual PID 

block, the fault should cause the process to revert to local from remote and sound an alarm.   

 

If a fault occurs in the PID block, the best practice is to change the block from automatic to 

manual.  One of these faults is referred to as anti-reset windup.  In manual, the algorithm is not 

active and the error term is reset to zero eliminating the integral term from growing with a 

growing error.  

 

Example of Fault Causing Switch from Remote to Local  
 

When looking at PV, a temperature profile may be found to form a composite PV.  The values of 

a number of different temperature inputs are summed together.  The sum is weighted with the 

weighted values having to add to 100%.  If the weights do not add to 100%, the individual PID 

blocks used to control their CV outputs are switched to local mode.  The local setpoint is used 

until the weights have been adjusted to add to 100% and the operator switches control back to 

remote.  

 

 

 x 

 

 

 x 

   

 

 x 

  + 

 

 

 

 

 

In the example, Weights 1-3 must add to 100 % for the Temperature PV to run the temperature 

PID block in remote. 

 

 

 

Weight 1 Temperature 1 

Weight 2 Temperature 2 

Weight 3 Temperature 3 

Temperature PV 

Fig. 19-28 
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Example of Fault Causing Switch from Auto to Manual 
 

When operating between Auto and Manual, the PID block should be monitored so that a failure 

to achieve the desired result is not defeated by faulty equipment.  If the equipment fails, the PID 

block should be faulted to the Manual Mode and an alarm sounded.  For instance, if a valve is 

attached to the CV and the valve does not turn when the CV changes, this should be considered a 

fault condition.  To find if this is the case, the CV or output is compared to a position on an 

analog scale.  The sensor is usually nothing more than a potentiometer.  If the CV does not keep 

within 10% (or other constant) over a time period such as 10 seconds, the PID block for the valve 

should fail. 

 

Another type of failure is the restriction of flow that can cause the CV to travel to full ‘on’.  A 

restriction in flow may be simulated by simply pinching off a hand valve in the line of flow.  Any 

restriction over time can cause the CV to not be able to control the process.  If the CV is allowed 

to go to 100% for a period of time, the PID block should fault and the output be placed in 

Manual.  Ranges other than 100% may be used as well with a time delay appropriate to shut 

down the process in abnormal conditions.  The programmer must be able to decide acceptable 

ranges for these cutoffs, usually through experience with the PID block and with the process. 

 

Eliminating Anti-Reset Windup 
 

In order to avoid anti-reset windup of the PID controller, the controller must be switched from 

auto to manual when conditions exist that would wind up the controller integral term.  The 

integral term is reset to zero in manual mode.  To detect integral error, monitor the PV.  If the PV 

does not follow the CV after a preset time, something is perceived to be wrong with the system 

and action should be taken.   

 

For example, a check valve may be turned off starving the system. When this happens, the PID 

controller must be placed in manual to eliminate windup and an alarm sounded.  

 

An experienced operator will find the problem and reset the loop to auto control.  And the system 

will continue to function with only a small upset to the system.  If the PID block is allowed to 

wind up over several minutes or hours, the output valve may stay open 100% (or closed 100%) 

for long periods of time after the system comes back into operation before control is re-

established.  In this time period, excessive gas may flow through a gas valve causing an 

explosion or too much liquid may flow through a control valve flooding a process vessel 

downstream.  In any case, the result usually upsets the entire system causing scrapped product or 

worse. 

 

When switched from Auto to Manual, the error integral term is reset to zero: 
 

Auto 

 

Manual 

 

               0E     = 0E  

 
windup may occur     no windup 

 

 

When switched from Manual to Auto, the error integral term starts at zero and adjusts: 

Fig. 19-29 
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 Auto 

  

 Manual  

 

 = 0E     0E  

 
no windup   error term initially 0 

 

Changes from Manual to Auto are usually made by the operator and imply that the operator is 

aware that a problem occurred, has found the problem and is ready to put the process back into 

Auto.   

 
 
Processes in Lab 
 

While becoming familiar with PID from an industrial viewpoint, it was clear that the PID block 

would be a good addition to the classroom.  A first process was a simple valve attached to a ¾ 

inch water line which allowed the flow to be controlled from 0 to about 90 gallons of water a 

minute.  The water was allowed to flow down a drain after passing through the valve.  This was a 

definite waste of water but demonstrated an industrial PID block to students. 

 

The following is a bill of material to construct the flow valve system shown below in Fig. 19-18. 

 

 

Fig. 19-30 
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The valve on the wall was a first lab for EET to activate.  It had been available for students from 

about academic 2004.  We had used it over the years with good success. 

 

 
 

Fig. 19-32    The Flow Sensor Input 

 

The flow sensor is a paddle wheel placed in the flow of water.  There is a calibrated readout for 

the flow meter that displays the flow in gallons per minute.  Included with the flow sensor is a 

flow instrument read-out.  This read-out is separate from the PLC and HMI and is used by 

personnel in the field to read the 4-20 mA reading from the transmitter to the PLC input.  It is a 

Fig. 19-31 
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useful instrument in that it verifies externally from the PLC a value that can be seen in the 

program. 

 

 

Fig. 19-33 Signet Flow Instrument as seen in Lab 

 

The valve has been discontinued as an active lab due to the possibility of water flooding the 

downstairs.  What had been a good lab is no more.  The discussion that follows gives a guide for 

setting up the Allen-Bradley version of the valve using RSLogix 5000.  No longer would we use 

an integer PID block but rather a Floating-Point block. 

 

Allen-Bradley Analog Inputs and Outputs 
 
Wiring diagrams for the card as well as the engineering range of the input and output channels 

are found on the next two pages. 
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1769-IF4XOF2/A 
Terminal Door Label 

Fig. 19-34 1769-IF4XOF2/A and F2F/A Analog Card

 
 

Fig. 19-37

 

Vin 1+

V/Iin 1-

Iin 1+

Iin 3+

Vin 3+

V/Iin 3-

ANLG Com

Vin 0+

V/Iin 0-

Iin 0+

Vin 2+

V/Iin 2-

Iin 2+

Vout 0+

Iout 0+
Vout 1+

Iout 1+

Flow 
Xmitter

Flow 
Valve

24 VDC

ANLG Com

 
 

The wiring diagram of the card is shown above.  The input and output range of the 4-20 mA 

engineering units can be found by looking up the accuracy of the signals.  Both have a range of 0 

mA to 21 mA – 0 to 32640 decimal range.  So, 4 mA would be 6217 (32640/21)*4 and 20 mA 

would be 31085.  Our range for the raw input and output then is 6217 – 31085. 

Fig. 19-35 
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Instead of the SCP instruction, scaling is handled in the card set-up for the I/O card: 

 

 

 
Using the CompactLogix PID Block with RSView ME 
 

The PID algorithm used the CompactLogix hardware and software to provide control of the same 

valve used in the SLC programming experience for the Fat Valve in the Dog Food example.  The 

graphical operator interface will be upgraded to the newer RSView ME operator interface. 

 

 
Inclusion of the data tag to create the list shown above.  The PID algorithm uses these data tags 

to calculate and control a PID block.  For instance, the PV value for the block is mypid.PV.  The 

SP or setpoint is mypid.SP.  The example screens that follow show the newer IF4XOF2F/A card and 

are used to set up the scaling for the present system in the lab. 

 

 

Fig. 19-36 
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       Fig. 19-37  Controller Configuration of the L30ERM 
 

The task was set up to execute every 100 msec in a separate program from Main or the 

background task.  This is shown in the figure below: 

 

Fig. 19-41

 
 

 

Fig. 19-38 
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         Fig. 19-39 PID Module Set in Periodic Task 

 

 

 

 
 

Fig. 19-40 Configuration of the PID I/O Module 
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Fig. 19-41 Data Update Rate Set for I/O Card Here 

 

 

 
 

Fig. 19-42 Configure Input Type Here 
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Fig. 19-43 Don’t Forget to Enable the Channel 

 

  
 

Fig. 19-44 Entire Tag List for PID Listed 

Fig. 19-62 
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The Program Tags for the PID mypid are shown with variable contents.  These variables are 

useful as tag references used for communicating with the variables through program control. 

 

 

 
 

          Fig. 19-45 PID Tag Setup-Tuning 

 

 

The tuning tab shows the variables used to tune the PID block.  The Kp, Ki and Kd tuning 

constants in Fig. 19-63 above are probably the best variables for the water valve.  These 

constants should not vary too much from the numbers shown or the PID block may become 

unstable. 
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          Fig. 19-46  PID Configuration 

 

 

The configuration tab shows the variables used to set up the type of block used. There are a 

number of variables that are not used. 
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          Fig. 19-47  PID Alarms 

 

 

The alarms tab shows the alarm variables used to set up the block.  The alarm limits are ignored 

for now but in a real application will be necessary when setting up a system of alarms. 

 

The scaling tab shows the variables as set up in the block. We need to make a decision whether 

to scale the engineering units. The unscaled PV and CV are listed at 3200 low to 21000 high. The 

Engineering Units for the PV may be changed or left as is.  For water, the engineered units 

should be 91 gpm max.   
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31085

31085

6217

6217

 
 

 
 

           Fig. 19-48  PID Setup 
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         Fig. 19-48  Tuning Parameters 

 

 

 
 

Fig. 19-49  Setpoint Trial 
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Fig. 19-50  Manual Trial 
 

 

 
 

Fig. 19-51  Setup of the Faceplate 
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Fig. 19-52 

Fig. 19-53 
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Continuing the Allen-Bradley Configuration Pages 
 

After you enter the PID instruction and specify the PID structure, you use the configuration tabs 

to specify how the PID instruction should function. 

 

To specify tuning, select the Tuning tab. Changes take effect as soon as you click on another 

field. 

 

To configure the PID:  
Specify Setpoint (SP)   Enter a setpoint value (.SP). 
 
Set output % Enter a set output percentage (.SO) (In software manual mode, this value is 

used for the output. In auto mode, this value displays the output %.) 
 
Output bias      Enter an output bias percentage (.BIAS). 
 
Proportional gain (Kp) Enter the proportional gain (.KP).For independent gains, it’s the 

proportional gain (unitless).  For dependent gains, it’s the controller gain 
(unitless). 

 
Integral gain (Ki) Enter the integral gain (.KI).  For independent gains, it’s the integral gain 

(1/sec).  For dependent gains, it’s the reset time (minutes per repeat). 
 
Derivative time (Kd) Enter the derivative gain (.KD).  For independent gains, it’s the derivative 

gain (seconds).  For dependent gains, it’s the rate time minutes). 
 
Manual mode Select either manual (.MO) or software manual (.SWM). Manual mode 

overrides software manual mode if both are selected. 
 
PID equation Select independent gains or dependent gains (.PE).  Use independent when 

you want the three gains (P, I, and D) to operate independently. Use 
dependent when you want an overall controller gain that affects all three 
terms (P, I, and D). 

 
Control action     Select either E=PV-SP or E=SP-PV for the control action (.CA). 
 
Derivative of: Select PV or error (.DOE).  Use the derivative of PV to eliminate output 

spikes resulting from set-point changes. Use the derivative of error for fast 
responses to set-point changes when the algorithm can tolerate 
overshoots. 

 
Loop update time    Enter the update time (.UPD) for the instruction. 
 
CV high limit      Enter a high limit for the control variable (.MAXO). 
 
CV low limit      Enter a low limit for the control variable (.MINO). 
 
Deadband value    Enter a deadband value (.DB) 
 
No derivative smoothing   Enable or disable this selection (.NDF) 
 
No bias calculation    Enable or disable this selection (.NOBC). 
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No zero crossing in dbnd   Enable or disable this selection (.NOZC). 
 
PV tracking      Enable or disable this selection (.PVT). 
 
Cascade loop     Enable or disable this selection (.CL). 
 
Cascade type     If cascade loop is enabled, select either slave or master (.CT). 
 
Specify Alarms 
PV high:       Enter a PV high alarm value (.PVH). 
 
PV low:       Enter a PV low alarm value (.PVL). 
 
PV deadband:     Enter a PV alarm deadband value (.PVDB). 
 
Positive deviation    Enter a positive deviation value (.DVP). 
 
Negative deviation    Enter a negative deviation value (.DVN). 
 
Deviation deadband   Enter a deviation alarm deadband value (.DVDB). 
 
Specify Scaling 
PV unscaled maximum Enter a maximum PV value (.MAXI) that equals the maximum unscaled 

value received from the analog input channel for the PV value. 
 
PV unscaled minimum Enter a minimum PV value (.MINI) that equals the minimum unscaled value 

received from the analog input channel for the PV value. 
 
PV engineering units maximum Enter the maximum engineering units corresponding to .MAXI (.MAXS) 
 
PV engineering units minimum Enter the minimum engineering units corresponding to .MINI (.MINS) 
 
CV maximum     Enter a maximum CV value corresponding to 100% (.MAXCV). 
 
CV minimum     Enter a minimum CV value corresponding to 0% (.MINCV). 
 
Tieback maximum Enter a maximum tieback value (.MAXTIE) that equals the maximum 

unscaled value received from the analog input channel for the tieback 
value. 

 
Tieback minimum Enter a minimum tieback value (.MINTIE) that equals the minimum 

unscaled value received from the analog input channel for the tieback 
value. 

 
PID Initialized If you change scaling constants during Run mode, turn this off to reinitialize 

internal descaling values (.INI) 
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Shifting to the HMI Program, RS Studio is entered and the Libraries choice and then Face Plates 

choice is entered. 

 

 
 

          Fig. 19-54 Under Libraries – Face Plates 

 

With RSStudio, build a screen from scratch using a face plate.  There are a number of face plates 

in the template from which to choose.   
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           Fig. 19-55 HMI Loop Face Plate 

 

The various parts of the face plate are animated.  The next screen shows the details:  

 

 
 

    Fig. 19-56 Animation of the Arrow 
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         Fig. 19-57 Animation of the Numeric Entry 
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A Third Industrial Application – A Steel Furnace 
 

As with the Glass Furnace, the Steel Reheat Furnace uses three PID Controllers working together 

as shown again below.  This was programmed again for a Steel Reheat furnace with one major 

exception. 

 

Temperature

Controller

Gas

Controller

Oxygen

Controller

Temp PV
Temp SP

Gas PV

Gas SP Oxygen SP

Oxygen PV

Gas CV Oxygen CV

 
Fig. 19-58 PID Control for Simple Furnace Control 
 

In some applications involving gas and oxygen, the oxygen must be guaranteed to be in excess 

relative to fuel.  Otherwise, excess gas may build up in the chamber and explode.  Above certain 

temperatures, gas will burn without exploding. This is an especially prevalent condition in some 

steel reheat furnaces. 

 

In the case of gas and oxygen below the critical temperature for gas to burn, a cross-limiting 

control scheme is introduced to allow only enough gas to be present to burn with at least enough 

oxygen or combustion air to burn all the gas all the time.  This implies that the gas valve always 

must be more closed than the oxygen valve (times the air-fuel ratio).  Control of the cross-

limiting requires the same temperature control as the master control but introduces lag control, 

high select, low select and other control blocks in addition to the PID control.  The oxygen 

control for the cross-limiting control algorithm would be: 

 

Temperature

Controller

Oxygen

Controller

Temp PV
Temp SP

Gas PV

Oxygen SP

Oxygen PV

Oxygen CV

High SelectLag

 
Fig. 19-59 
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The gas control for the cross-limiting control algorithm would be: 

 

Low Select Lag

Temperature

Controller

Gas

Controller

Temp PV
Temp SP

Gas PV Gas SP

Oxygen PV

Gas CV  

 

As can be seen, the Gas PID block selects the lower of the values of the Temperature Setpoint or 

the Oxygen value after a lag has occurred.  The effect of the cross-limiting control is to assure a 

Gas-Oxygen ratio that will never allow more gas into the combustion chamber than can be 

burned in the combustion process.  This is an example of a much more complex algorithm than 

was first discussed earlier with a simple PID block.  The same PID blocks are still used but with 

more sophisticated program control in addition to perform the task at hand. 

 

 

Example of PID Block for Feedforward Control – Also First Encountered in The Steel Furnace 
 
The PID block is a device used for feedback control.  Many times, however, a small amount of 

feed-forward control is required.  Feed-forward control may include control that anticipates an 

action and is ready to apply control as a situation arises more quickly than the pure feedback 

solution is able to provide.  Since there is only one set of tuning parameters for the PID block, it 

is not practical to switch to a second set of parameters for a special case.   

 

The following example shows how a little tweaking of the PID block can be useful for some 

anticipatory or feed-forward control.  The example below is of a furnace with a door on the front. 

This example shows just one of many additions to the PID block to give it characteristics not 

normally associated with PID control. 

 

The gas burners use air for combustion and the air must be exhausted through an exhaust stack.  

Pressure in the furnace is adjusted by adjusting the damper in the stack.  Pressure should be 

adjusted to be slightly negative so flames do not jump out of the door when the door is opened. 

  

 

Fig. 19-60 
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Stack Damper

Furnace Door

Pressure 

Sensor

Furnace Pressure PID Block

Pressure Sensor = Pv

Operator entry of 

  Furnace Pressure = SP

Position of Stack 

  Damper = Cv

Operator Entry

Furnace Pressure = xxxx

 
 

The concern of the pressure PID loop is:   

 

        What happens when the door opens? 

 

This is a major concern because the PID loop must respond in a much different manner in this 

circumstance than under normal operating conditions with the door closed.  The fact that an 

event such as the door opening occurs helps to accomplish the control of this task.  While not 

true feed forward, augmentation of the PID block will help offset the pressure upset and keep the 

flames pretty much inside the furnace.  (Flames coming out the furnace tend to ignite grease from 

bearings causing grease fires around the furnace.) 

 

To accomplish better pressure control, place a limit switch on the door and adjust the output of 

the PID block so the output will open the damper rapidly and then recover.  The constant of the 

jump is a number that should be adjustable by an operator in the maintenance mode only. 

 

Fig. 19-61 
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When the door swings open, perform the following operation using a one-shot rung: 

 
          CV = CV + constant 

 

This statement should be written only once to the CV.  Use a one-shot circuit to add the constant 

to CV.  The CV then is allowed to recover to its new value but from a new higher starting point 

as opposed to the original value.  The value of the constant is the amount shown by the arrow 

below.  This is a constant that is adjusted to fit the application.  Once set, it should not be 

changed. 

Furnace 

Pressure

(negative)

New 

Response

Old Response

One Shot 

Add to Cv

 
 

The response is a simulated response but makes the point that the response to a pressure change 

requires fast action to adjust to the conditions of the door opening.  A change in the CV provides 

this type of change.  The change in CV will start the adjustment procedure and trick the PID 

tuning parameters into responding to the new situation quickly instead of a slow acting controller 

as would be the case for the regular control of oven pressure. 

 

While the addition of a small incremental value to CV may be considered a trick on the PID 

block, it is important to note that such an action may be accomplished in the PLC very easily.  

Ladder logic accommodates this type of programming through the use of one-shot ladder logic 

and math functions.  This type of change to the PID block provides quick response to an upset 

outside the normal range of the PID block's algorithm.  The actual move may only be able in the 

manual mode.  To move to manual, change the CV and then move back to auto is recommended 

for this action to occur successfully. 

 

P&ID Symbols 

To read a P&ID Diagram one needs to understand the symbols and nomenclature of the P&ID 

Diagram.  The example below shows two PID Controllers and their associated hardware and 

logic.  This drawing is one of many found in industry.  The course uses the Process Control text 

from Liptak for many of its examples including this one below: 

 

  

Fig. 19-62 

Fig. 19-63 
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The circles are referred to as ‘bubbles’.  Inside the bubbles there are letters and usually numbers.  

The letters have meaning based on the tables below.  To understand what is represented, look for 

the bubbles with xIC or xRC letters.  These represent PID blocks that are to be implemented in 

the control logic.  The third letter is ‘controller’ and the second letter is either I for ‘indicator’ or 

R for ‘Recorder’.  The indicator label refers to a faceplate.  This today symbolizes a single 

faceplate on an HMI screen.  The recorder label refers to a histogram recording device, today 

usually symbolized by a historical data plot for the variable being controlled.  Both I and R may 

be present today since it is easy to include both functions in a PID block inside a computer 

system such as a PLC.   

 

If there are two arrows coming to the xIC or xRC, then one is the PV and one is the SP.  It takes 

some intuition to determine which is which.  If there is only one arrow coming into the PID 

controller, then this is the PV and the SP is entered through a faceplate.   

 

First Letter Designations: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Letter First Position Succeeding Positions 

A Analysis Alarm 

B Burner Flame  

C Conductivity Control 

D 
Density / 

Differential 
 

E Voltage  

F Flow Rate / Ratio  

G Gaging Glass 

H Hand High 

I Current Indicate 

J Power / Scan  

K Time  

L Level Light / Low 

M Moisture Middle/ Manual 

N Choice  

O Choice  

P Pressure  

R Radioactivity Record 

S Speed Switch 

T Temperature Transmit 

V Viscosity Valve 

W Weight Well 

X Interlock  

Y Choice Relay 

Z Position Drive 
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Process 

Measurement 

Element 

Type Element Transmitter Indicator 

Indicator 

controller Controller 

Ratio 

Controller Recorder 

Code E T I IC C FC R 

Analysis A AE AT AI AIC AC AFC AR 

Conductivity C CE CT CI CIC CC CFC CR 

Density D DE DT DI DIC DC DFC DR 

Voltage E EE ET EI EIC EC EFC ER 

Flow F FE FT FI FIC FC FFC FR 

Dimension G GE GT GI GIC GC GFC GR 

Hand H HE HT HI HIC HC HFC HR 

Current I IE IT II IIC IC IFC IR 

Time K KE KT KI KIC KC KFC KR 

Level L LE LT LI LIC LC LFC LR 

Humidity M ME MT MI MIC MC MFC MR 

Power N NE NT NI NIC NC NFC NR 

Pressure P PE PT PI PIC PC PFC PR 

Delta 

Pressure dP dPE dPT dPI dPIC dPC dPFC dPR 

Quantity Q QE QT OI OIC QC QFC QR 

Radioactivity R RE RT RI RIC RC RFC RR 

Speed S SE ST SI SIC SC SFC SR 

Temperature T TE TT TI TIC TC TFC TR 

Delta 

Temperature dT dTE dTT dTI dTIC dTC dTFC dTR 

Viscosity V VE VT VI VIC VC VFC VR 

Weight W WE WT WI WIC WC WFC WR 

Vibration Y YE YT YI YIC YC YFC YR 

Position Z ZE ZT ZI ZIC ZC ZFC ZR 

 

 

The table above contains descriptions of various types of transmitters, indicators, controllers and 

recorders.  Most PID blocks are used to program controller items.  There is a one-to-one 

programming transfer for most xIC (various, Indicating Controller) or xC controllers. 
 

Process and Instrumentation Drawings (P&ID) are formalized drawings of a process explaining 

flow and movement of material.  It is important to know the symbols for this type of drawing.  It 

is also important to be able to understand the functionality of the devices on the drawing so the 

engineer or technologist can program the process on the PLC or other computer.   

 

It is also hoped that down the road, the engineer or technologist is allowed to design the P&ID 

for others.  The programmer usually understands the process as well as anyone and has insight 

into the complexities of the process and should be allowed to take responsibility for design of the 

P&ID.   

 

A note about PID vs P&ID:  Of course, the similarities are glaring.  PID refers to the control 

block Proportional Integral Derivative, a control algorithm.  P&ID refers to Process and 

Instrumentation Drawings.  Some refer to them as Piping and Instrumentation Drawings. 
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Process 

Measurement 

Element 

Type 

Hand 

Switch 

Hand 

Valve Totalizer 

Indicating 

Totalizer 

Solenoid 

Valve 

Control 

Valve Calculation 

Code HS HV Q IQ XV V Y 

Analysis A AHS AHV AQ AIQ AXV AV AY 

Conductivity C CHS CHV CQ CIQ CXV CV CY 

Density D DHS DHV DQ DIQ DXV DV DY 

Voltage E EHS EHV EQ EIQ EXV EV EY 

Flow F FHS FHV FQ FIQ FXV FV FY 

Dimension G GHS GHV GQ GIQ GXV GV GY 

Hand H HHS HHV HQ HIQ HXV HV HY 

Current I IHS IHV IQ IIQ IXV IV IY 

Time K KHS KHV KQ KIQ KXV KV KY 

Level L LHS LHV LQ LIQ LXV LV LY 

Humidity M MHS MHV MQ MIQ MXV MV MY 

Power N NHS NHV NQ NIQ NXV NV NY 

Pressure P PHS PHV PQ PIQ PXV PV PY 

Delta Pressure dP dPHS dPHV dPQ dPIQ dPXV dPV dPY 

Quantity Q QHS QHV QQ QIQ QXV QV QY 

Radioactivity R RHS RHV RQ RIQ RXV RV RY 

Speed S SHS SHV SQ SIQ SXV SV SY 

Temperature T THS THV TQ TIQ TXV TV TY 

Delta 

Temperature dT dTHS dTHV dTQ dTIQ dTXV dTV dTY 

Viscosity V VHS VHV VQ VIQ VXV VV VY 

Weight W WHS WHV WQ WIQ WXV WV WY 

Vibration Y YHS YHV YQ YIQ YXV YV YY 

Position Z ZHS ZHV ZQ ZIQ ZXV ZV ZY 

 

 

Devices such as hand switches, valves and some electronic devices such as totalizers and 

calculation elements are described here.  Most calculation elements are executed inside the 

computer and algorithms become much too difficult to describe on the P&ID.  The designer of 

the P&ID is free to decide how much of the calculation information is to be included on the 

drawing. 
 

Devices such as those of the table above are primarily used for checking position of switches and 

for various types of alarm. It is not uncommon to assign switches for end-of-travel on analog 

devices.  With most analog systems, there is an alarm reserved for both low and low-low.  Low-

low is the signal that is just past low and should be attached to an alarm as well as shut-off logic.  

The same logic is used for high and high-high.  The inner alarm is the low or high alarm bit and 

the low-low and high-high are the outer or fail-safe alarm.   
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Process 

Measurement 

Element 

Type 

Ratio 

Calculation 

Switch 

Low Switch  High 
Alarm 

Low 

Alarm 

Low Low 

Alarm 

High 

Alarm 

High 

High 
Code FY SL SH AL ALL AH AHH 

Analysis A AFY ASL ASH AAL AALL AAH AAHH 

Conductivity C CFY CSL CSH CAL CALL CAH CAHH 

Density D DFY DSL DSH DAL DALL DAH DAHH 

Voltage E EFY ESL ESH EAL EALL EAH EAHH 

Flow F FFY FSL FSH FAL FALL FAH FAHH 

Dimension G GFY GSL GSH GAL GALL GAH GAHH 

Hand H HFY HSL HSH HAL HALL HAH HAHH 

Current I IFY ISL ISH IAL IALL IAH IAHH 

Time K KFY KSL KSH KAL KALL KAH KAHH 

Level L LFY LSL LSH LAL LALL LAH LAHH 

Humidity M MFY MSL MSH MAL MALL MAH MAHH 

Power N NFY NSL NSH NAL NALL NAH NAHH 

Pressure P PFY PSL PSH PAL PALL PAH PAHH 

Delta 

Pressure dP dPFY dPSL dPSH dPAL dPALL dPAH dPAHH 

Quantity Q QFY QSL QSH QAL QALL QAH QAHH 

Radioactivity R RFY RSL RSH RAL RALL RAH RAHH 

Speed S SFY SSL SSH SAL SALL SAH SAHH 

Temperature T TFY TSL TSH TAL TALL TAH TAHH 

Delta 

Temperature dT dTFY dTSL dTSH dTAL dTALL dTAH dTAHH 

Viscosity V VFY VSL VSH VAL VALL VAH VAHH 

Weight W WFY WSL WSH WAL WALL WAH WAHH 

Vibration Y YFY YSL YSH YAL YALL YAH YAHH 

Position Z ZFY ZSL ZSH ZAL ZALL ZAH ZAHH 

 

 

 

These tables demonstrate the breadth of labeling that can be included on a device.  The devices 

are also numbered and contain a 3 or 4 digit number in addition to the device type name.  These 

numbers are usually assigned sequentially and are placed on a metal tag that is attached to the 

device itself.  In the plant, one should be able to find a device, then find its metal tag, and find the 

reference to the device on the P&ID.  Names of devices are used on electrical drawings as well as 

on the P&ID.  If a device is referenced as a flow transmitter and numbered 087, then FT-087 is 

referenced on all drawings using the same name. 

 

The design of a P&ID may start with a senior engineer familiar with the process.  Other sources 

for P&ID’s are reference books such as the Liptak reference handbook Process Control.  Texts 

and company reference drawings are good sources for a starting point for a new P&ID.  Of 

course, names such as those listed above are to be used in defining the devices used in the 

process. 
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Example Program from P&ID: 
 
A P&ID Drawing may be used to begin the process of programming the PLC.  A P&ID such as 

the following may be used to generate a simple program that only works in auto mode with just 

logic to run the PID blocks in auto using the Setup Blocks from Allen-Bradley or Siemens.  This 

is a first step in setting up a complete PID program.  This example shows the two PID blocks 

found (DIC, FIC) and the corresponding relationships with PV, SP and CV’s.  The goal of this 

pseudo-coded program is to write a first pass of the PID program.   

 

Problems at the end of the chapter give more example P&IDs. 

 

FIC

001
x

DIC

001

PDT

001

DT

001

FT

001

 
 

 

The P&ID above is used to generate a PLC ladder diagram as follows: 

 

 

 

 

 

 

 

 

 

This program is not complete but a start.  It gives the linkage between the various PID 

controllers.  What is not included are the modes and their programming as well as any alarms and 

HMI interface. Also not included are the bumpless transfer programs.    

PID DIC 001 

PV PDT 001 

SP From HMI 

CV To Multiply  

PID FIC 001 

PV FT 001 

SP From Multiply 

CV to  FCV 001 

Multiply Block 

DT  001 x DIC 001 

to FIC 001 

Fig. 19-64 
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Example Programming for P&ID (The PLC program is left as an exercise for the student): 

 

x

FT

002

FIC

002

FIC

001

 
FT

001

FSL

001

Shut

off

 
 

 

 

The following diagrams show more extensive P&ID drawings for a complete system. 

 

 

Fig. 19-65 

https://www.edrawsoft.com/template-processing-pid.html
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https://www.edrawsoft.com/template-factory-pid.html
https://www.edrawsoft.com/template-water-boiling-process-pid.html
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Other Labs Built at School  Using Siemens PLCs 
 

The ball-in tube lab was built over the 2013-14 academic year.  It has served students well. 

 

The laser is the feedback device for the ball-in-tube experiment.  The laser gives an accurate 

position of the top of the ball. Specifications for the laser are given in the following figure.   

 

 

Fig. 19-66 Instructions for Laser for Ball-in-Tube Lab 
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Calibration of the analog output for the laser is described in the following figure.   

 

  

 

Tank over Tank Level Control Lab 
 

This lab was an effort to mimic a lab from a major educational equipment manufacturer.  The 

first attempt is pictured below.  The later design is pictured further below.  The number of 

different sensors used in the design is significant.  What first seemed to work may not work in 

the final design.  This was found to be the case in both the level and flow sensors. 

 

Fig. 19-67 
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Level Control 

of Upper Tank 

with Multiple 

Drains and 

Feedback from 

Level Sensor

 
 

The first system used a cheap level sensor before settling on the sonic sensor (yellow) seen 

below.  The flow sensor changed from a cheap $10 sensor to a $110 sensor and finally a better 

$160 sensor.  These changes were seen as necessary to control the process accurately. 

 
 

 
 
 
The pump control was from a digital output to a drive control module and finally to the pump 

motor.  The drive control module is shown below as attached to the system.  The actual 

device is shown below as well.  The pump is a submersible bilge pump selected by the 

plastics manufacturer known by him since his experience had been with boats and boat 

construction.  The speed control of the bilge pump is the same as that used in the later DC 

motor designs using PWM control.  These are discussed further in the description of these 

Fig. 19-68 

Fig. 19-69 
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devices. 

 

 
 

 
 

 

The level control selected first had been one that was attached to the Arduino 

microprocessor.  That level control failed.  It is not even on the pages of Arduino sensors at 

this time.  Seems as if more than one discovered that it didn’t work.  This is a common story 

with low-cost sensors.  Many will work for a while.  Some do not work at all.   

 

 

Fig. 19-70 

Fig. 19-71 

Fig. 19-72 

Fig. 19-73 

https://cdn-shop.adafruit.com/1200x900/464-00.jpg


 Ch 19 PID Block  61 

 

The level sensor below is an industrial sensor and is guaranteed to work long-term.  It does 

cost significantly more but is worth the money. The price of the sensor shown below is 

approximately $250. 

 

 
 

 

Fig. 19-74 

Compact ultrasonic sensor in straight 

or right-angle housing.  

• Senses from 30 to 300 mm  
• Available in analog or discrete 

models  
• Features minimal dead zone and 

eliminates dead zone if used in 
retrosonic mode  

• Ideal for material handling and 
packaged goods applications, such 
as bottling or liquid level detection 
and control for small containers  

• Available in straight or right-angle 
versions with a wide variety of 
mounting hardware for enhance 
sensing versatility  

• Offers programmable background 
suppression  

• Compensates for temperature, for 
greatest sensing accuracy  

• Simplifies setup with push-button 
and remote TEACH-mode 
programming  

• Shows status during setup and 
operation, using highly visible LEDs 
indicators 
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The yellow ultrasonic level transmitter worked very well and gives a stable accurate signal to 

the PLC from the tank level.  The output of this device is 4-20 mA. 

 

We now look at the flow sensors tried. The first again was a low-cost sensor. It worked for a 

little while (about an hour or so) only to fail.  We purchased a number of these and they all 

failed in a short while.  The electronics was not robust and the signal stopped shortly after 

initially running. 

 

 
 

The flow sensor shown here is the second. The third device is shown further below.  At the 

bottom is a fourth which was held in reserve but may be used down the road.  This sensor 

worked (but was not accurate).  We looked at it because we wanted something that would 

work.  It worked but if we want an accurate signal across the range, it lacked accuracy in the 

lower end of the range. 

 
 
The sensor below is the third flow sensor and is the best so far.  It is more costly but is accurate 

across the entire range and more accurate than the one above across the entire range. 

 
 

 

Fig. 19-75 

Fig. 19-76 

Fig. 19-77 
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This meter was found and is possibly a useful flowmeter for this project.  Its cost is significantly 

less than the two above but has not been validated yet.  The one above is about $160 and this one 

is about $60.   

 

 

 
 
 

Speed and Position Control of a DC Motor 

The figures shown below are from a shelved design by Prof. John Rich.  Prof. Rich’s design was 

good although students were prone to mis-wire it and destroy the op-amps on an adjacent control 

board.  This was a continuous analog solution as opposed to a digital solution using a computer. 

 

 
 

  

Speed and 

Position Control 

of DC Motor 

Fig. 19-79 

Fig. 19-78 
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The following gear motor replaces the geared motor shown above. 
 

 
Fig. 19-81 

Tape Rewind Machine 
 
The design shown below gives speed control for the two dc motors with tension control between 

the two. 

 

 

Later Motor Speed  

and Position 

Control Design 

Fig. 19-80 

Fig. 19-82 
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In this design, two motors are involved with a tensioner between.  The motors cannot both run at 

constant speed.  One can run at constant speed or at a ramped speed.  The second follows the first 

based on the angle of the dancer roll between the two.  The tension on the second can be changed 

based on the angle of the tension arm.  Weight can be added to the arm if additional tension is 

desired.   

 

Combining of two speed/position-controlled motors results in a lab similar to the one above in 

Fig 19-83.  This lab is inexpensive and provides a pair of PID loops to control the two dc motors 

and a third PID loop to control the tension between the two.  The third loop uses the dancer roll 

potentiometer as a feedback device.  This lab concentrates on loop-in-loop control.  Also 

important are start-up control issues.  The lab also asks the question of which loop is the master.  

For instance, should the right loop be constant speed?  Should the left loop be constant speed?  

Or should the speed be constant across the dancer roll?  The program is written differently for 

each.  Also, a sensor must be added if the dancer roll is to be constant speed.  This project has 

many different possible results depending on where the design starts.  The advances from the 

earlier toilet paper lab to the present design are many and include the addition of 80-20 extruded 

aluminum instead of the cheaper erector-set metal construction.  This one addition gave added 

stability to the machine from the earlier design. 

All present labs use the Siemens PLC due to the flexibility of the I/O to control analog quantities. 
 

Siemens Analog Inputs and Outputs 
 

 

The Siemens’ PID implementation is used in all the active applications shown above.  First, the 

address of all I/O is required as well as the wiring diagram for each analog point.  The S7-1200 

has two analog inputs located on the controller.   

 

Addressing for the two analog input channels is found below: IW64 and IW66.  The two analog 

inputs are wired to these two points and programmed with these addresses. 

 

Fig. 19-83 
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To read or write an analog value, use the immediate read or write instruction as shown below:  

 

 
 

 

Use a cyclic interrupt event to house the PID function.  The event is defined as an OB or Object 

Block.  We will use OB 30 for the program containing the PID Block for the present 

applications. 

 

Analog values are available from high-speed digital input pulses.  Analog output values may be 

realized through PTO or PWM signals from digital outputs.  An example is the Tank over Tank 

problem discussed in Chapter 25 of the Hybrid Lab Text.  The configuration of the pulse input is 

as follows: 

Fig. 19-84 
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Under the Function tab, choose single phase unless quadrature is to be used: 

 

Here, 0 and 0 are fine: 

 

No need to choose an interrupt.  The interrupt should be the cyclical interrupt executing the PID 

function: 

 

 

Next, identify the actual input addressed as the hsc input: 

Fig. 19-86 

Fig. 19-85 
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Then, identify the input address ID:1000-1003: 

 

 

The address of the input used is IW1002.  It is used in the following statement as the rolling 

value of the input count.  This logic executes each time period and calculates the pulses in the 

last scan: 

 

 

The address of the output is QW1000.  It is used in the following statement as the value of the 

output count.   

 

 
 

The configuration of the PWM output for control of the bilge pump for the Tank lab as well as 

the gear motor lab is a single PWM 24 V output that turns on a dc motor controller input: 

 

 
 

The pulse width modulated output is set up in microseconds.  Other constants in the set-up 

include the overall pulse duration.  The pulse length is 10 msec with a base of 10,000 counts: 
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The following statement identifies the output to be pulse modulated: 

 

 
 

 

The following address gives the output address to load the pwm time into QW1000: 

 

 
 

 

The following views of the output show various PWM settings.  The first one is approximately 

75% or a value in QW1000 of 7,500: 

 

 

 

Fig. 19-87 
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This view shows approximately 90% on: 

 

 
 
 

A list of hardware identifiers for the various I/O points is found in the list of system constants 

under the system constant tab: 

 

 

 

 

The final set-up of the pwm and hsc devices includes a DB for each.  This is found in the OB1 

code.  The hardware identifier is found in this instruction and ties the device to the action: 

 

Fig. 19-88 
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PID control - Siemens 
 
STEP 7 provides the following PID instructions for the S7-1200 CPU: 

 

The PID_Compact instruction is used to control technical processes with continuous input and 

output variables.  The PID_3Step instruction is used to control motor-actuated devices, such as 

valves that require discrete signals for open- and close actuation. 

 

Both PID instructions (PID_3Step and PID_Compact) can calculate the P-, I-, and D components 

during startup (if configured for "pretuning").  You can also configure the instruction for "fine 

tuning" to allow you to optimize the parameters. You do not need to manually determine the 

parameters. 

 

Note: Execute the PID instruction at constant intervals of the sampling time (preferably in a cyclic OB).  
Because the PID loop needs a certain time to respond to changes of the control value, do not 
calculate the output value in every cycle. Do not execute the PID instruction in the main program 
cycle OB (such as OB 1). 

 

The sampling time of the PID algorithm represents the time between two calculations of the 

output value (control value). The output value is calculated during self-tuning and rounded to a 

multiple of the cycle time.  All other functions of PID instruction are executed at every call.   

 

The PID (Proportional/Integral/Derivative) controller measures the time interval between two 

calls and then evaluates the results for monitoring the sampling time. A mean value of the 

sampling time is generated at each mode changeover and during initial startup. This value is 

used as reference for the monitoring function and is used for calculation. Monitoring includes 

the current measuring time between two calls and the mean value of the defined controller 

sampling time. 

 

Tuning of the Siemens PID loops is somewhat automatic with an autotune feature present.  If the 

autotune does not give adequate results (as in the DC Motor speed loop, guessing is helpful. 

Fig. 19-89 
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Link to S7-1200/1500 PID Manual: 

https://support.industry.siemens.com/cs/us/en/view/108210036 

The tuning rules are found on pgs. 265 - 266 under the descriptions of operating modes 

"Pretuning" and "Fine tuning" in the 1200. 

This formula is more complex than the formula explained earlier.  The three variables used are 

the same, however.  KP is the proportional constant, TI is the integral constant and TD is the 

derivative constant. 

 

 

To set up a PID block in your program, choose ‘Technology’ from Instructions and then ‘PID 

Compact’.  See below: 
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The settings for the controller may be reached by clicking the icon in the upper right of the PID 

block.  The block should also be placed in a Timed Interrupt OB: 

 

 

An example from the Ball in Tube program is included in the following explanation.  The second 

PID program developed is the Tank over Tank. 

Inserting the PID instruction and technological object 
 

STEP 7 provides two instructions for PID control.  Use the PID_Compact instruction for the lab 

in this course, please! 

 

The PID_Compact instruction and its associated technological object provide a universal PID 

controller with tuning. The technological object contains all of the settings for the control loop. 

 

The PID_3Step instruction and its associated technological object provide a PID controller with 

specific settings for motor-activated valves. The technological object contains all of the settings 

for the control loop. The PID_3Step controller provides two additional Boolean outputs. 

Fig. 19-90 
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After creating the technological object, you must configure the parameters. You also adjust the 

autotuning parameters ("pretuning" during startup or manual "fine tuning") to commission the 

operation of the PID controller. 

 

 
 

When programming the inputs and outputs, the following two instructions are used to scale and 

normalize the analog value.  Use the NORM_X function first to convert the number to a real in 

the range 0-1 and then use SCALE_X to scale the normalized value to a range for the real value. 

 

 
Descriptions of various parameters in the PID block are found below: 

 

Fig. 19-91 
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The values in the table above are necessary to make the PID block work correctly.  Some may be 

set once and not included in the program as variables.  Others must be included as programmed 

variables.  For example, if Input_PER is used, this input must be represented as a percent from 0 

to 100.0.  This value is the value fed to the PID block from the analog process variable, in this 

case the laser.  The variable must be represented in Input_PER as a ratio from 0 to 100.   

 

Other variables in the table above are useful when coordinating with the faceplate.  For example, 

if the PID algorithm is set to manual, the ManualValue variable must be set to the desired state of 

the output of the PID.  The variable is moved to this location and the output is set to this value. 
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Likewise, these variables contain information to allow the PID algorithm to function properly.  

The state is a number from 0 to 8.  We only use the values of 3 and 4 for the application given in 

the Ball-in-Tube program.   

 

The I/O address of the analog input point is shown in the analog input addresses of the base 

processor unit.  If additional analog points beyond two or if these points need a floating neutral, 

then an additional analog input card is needed.  In our example for the ball-in-tube lab, the input 

addresses start at I:64.  The first address is bytes I:64 and 65.  The second input address is bytes 

I:66 and 67. 
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Fig. 19-92 Addresses of the Analog Inputs 

 

Display of the analog points is done on a historical data plot shown below. 

Fig. 19-93
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Fig. 19-95 Setting up the Cyclic Interrupt (OB30) 

 

A separate Cyclic Interrupt Program must be built to provide execution of the PID Block.  The 

PID program executes the PID algorithm after reading the Process Variable input.  After 

execution of the algorithm, the PWM output determines the state of the output to the fan. 

 

The PID algorithm for the Ball-in-Tube program is shown below.  The instruction is configured 

and set up from programming statements as well as constants entered into the tables above. 

Fig. 19-94 
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Fig. 19-96 The PID Block for the Ball-in-Tube Lab 

 

The HMI panel below has a button to choose between auto and manual.  In PID_PWM, the 

button is in automatic.  When in auto, the setpoint is entered on a separate page.  The manual 

value for the PID output may be entered below the button in manual mode. 

 

Fig. 19-97
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Below the button is a data entry window for the value of percent on time for the fan.  In this 

window is the percent on time for the output. 

The Configuration editor for PID_Compact shows the following screen.  Here, the user selects 

the units such as temperature or pressure.  The user also determines whether variables such as the 

PV are Input or Input_Per.  Most users would select ‘general’ for controller type. 

 

Use the commissioning editor to configure the controller for auto-tuning at startup and for auto-

tuning during operation.  To open the commissioning editor, click the icon on either the 

instruction or the project navigator. 
 

Fig. 19-98

 
 

The following table lists some common suggested actions for assisting the set-up of the PID 

controller: 
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Other General Considerations for PID Programs 
 

Building the Faceplate 
 

The faceplates below are samples of single loop faceplates that are accepted by most industry.  

They resemble faceplates of actual PID controllers used prior to the computer.  They may be 

more or less sophisticated than these and may include the 3-d look or not.  These are samples of 

what is expected for proper HMI design of a faceplate. 

 

 
 

           Fig. 19-99 One of Many 

 

Choose a faceplate and begin modifying it for the application.  Several tags are provided with 

each faceplate.  These tags may set a number, allow entry of a number, move an animated arrow 

or fill a sliding window.  Bits may be added for auto/manual and local/remote.  Note that alarms 

may also be included such as the red and yellow tags above.   

 

These faceplates may be modified with additional components.  They may also be built from 

scratch using existing components.  At one time, the faceplate could be unbundled.  While no 

longer possible, the individual components may be animated by clicking them and then 
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answering the questions. 

  

The next two pages show the animation of the faceplates from Siemens and Allen-Bradley using 

the faceplate as the starting point for the animation.  While the faceplate given is not available 

from Siemens, it can be built from parts using existing Siemens components.  The up and down 

triangles shown in the earlier faceplate may also be added to these faceplates for a more complete 

system.  The logic in the Siemens faceplate below show how to add the triangles. 

 

The following logic can be used to add 1 % to the full scale value of the Setpoint.  Similar logic 

can be used for 5% increase or for 1% or 5% decreases.  The triangle buttons on the original 

faceplate showed these triangles.  Similar buttons can be added to the CV or Output logic when 

the PID algorithm is in manual.  Similar logic can be added to the Allen-Bradley program. 

 

 
 

Fig. 19-100  Logic for Incremental Change of Setpoint 
 

 

The following from HPHMI examples in Chapter 15 show a group of PID controllers.  Each 

gives just the information necessary for the running of that controller. To change the mode of the 

controller or to run the controller in a mode other than remote requires a more complete 

faceplate.  To add this feature, simply program an invisible button that calls a pop-up faceplate 

similar to the one below.  

 

 
 

          Fig. 19-101  Analog Depiction of Information 
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Fig. 15-23   Further Explanation of Moving Analog Indicators

 
 

Two new topics not explored in the earlier PanelView were alarm screens and trends.  Alarm 

banners were available in the older PanelView but were not as flexible as the newer alarm screen.  

Also, trends are needed.  Trend data is very important in that a trend of any variable can be used 

to diagnose a problem either in the start-up phase of a project or later during daily operation.  

Historical data trends will show long-term trends as well. 

Tank of Liquid Fat

Control Valve

 
         Fig. 19-103  Imaginary Button calling Faceplate 

Fig. 19-102 
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This figure shows a partially finished graphic of the ‘fat’ portion of the dog food extruder.  When 

the invisible button around the valve is energized, the PID block faceplate appears allowing 

control of the valve in auto and manual mode.  Local and remote control may also be added to 

the screen with the faceplate.  The pipe may be enhanced as well to show flow when the valve is 

open and no flow when the valve is closed. 

 

The graphical application may be run from the PC or downloaded to a target system.  The tags 

for the graphical screen may be those in the PLC.  Care must be taken when selecting where the 

process is to be displayed.  If it is displayed from the computer screen, then Local is selected.  If 

the display is downloaded to the Panelview32, then Target is selected.  In order to display the 

process locally, a number of steps must be incorporated for the local application to correctly 

“see” the PLC.  

Tuning the PID Block 
 

It is interesting that a number of different PID algorithms exist.  No one standard equation is used 

in all controllers.  While the PID block has the same general function, nomenclature and the 

action of the block may differ.  

 

Proportional Band  =  100/gain 

Integral      =  1/reset 

Derivative    =  rate – pre-act 

 

Three classifications of PID algorithms are considered major classes of design equations.  They 

are ideal, parallel and series or interacting.  Equations for the three are listed below: 
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Different manufacturers use one of the above control algorithms (except Siemens) as the basis 

for their PID block.  The three do not respond identically to different situations.  A control 

algorithm from one manufacturer cannot be guaranteed to work identically to the control 

algorithm of a second manufacturer.  Differences in the derivative action are especially critical to 

the operation.  For this reason, many do not use derivative action in the tuning of a loop.  To not 

use derivative action, set the derivative or D value to zero. 

 

Manufacturers such as Honeywell, Bailey, Allen-Bradley, Modicon, Foxboro, Fisher, and Texas 

Instruments pick one of the above types of equation to implement on their controllers.  Some 

manufacturers allow a choice between which algorithm is used.  It is the engineer’s or 

technician’s responsibility to understand the application, the PID equation, and choose the best 

overall solution for the application. 
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Bumpless Transfer  
 

When the PID block is switched from manual to auto, the function responds to the SP presently 

available to the block.  If the process is sensitive to sudden changes in PID output, then the 

program should include logic to give the output a signal matching the present flow when the 

block was in manual.  This is referred to as bumpless transfer.   

 

With the more advanced PID blocks of the PLC/5 and Control Logix platform, the output value 

that is described as the value to write to so that the output will be bumpless is the .SO value.  The 

.SO value of the PID block should be given the value that the operation would like the output to 

have when the PID block is first put in Auto.  This value is usually the value of the output when 

the PID block is in Manual.  The MOV operation should guarantee bumpless transfer when the 

block moves from Manual to Auto.   

 

For example, if the block was in manual and flow was 25.5 gallons per minute, when the PID 

block is transferred to auto, flow should continue to maintain 25.5 gallons per minute.  With PID 

blocks, the addition of logic requires writing the present flow rate to the setpoint when the block 

transfers from manual to auto.   

 

Non-Standard Controller Modes 

A number of additional modes may be created for the PID block.  Bits must be programmed 

externally to the PID block for many of these other control modes.   

 

An example is Control Output Tracking (COT).  In COT, the loop is forced to manual and the 

output moves to a programmed position until conditions in the program are stable enough for the 

system to proceed to auto.  In COT, the mode shown to the operator is AUTO with COT.  The 

system is perceived to be in Auto but the output or CV is actually in Manual.   

 

This mode is ideally suited for burner start-up with a large number of burners.  When the burners 

are first turned on, the gas and combustion air are not able to be controlled under automatic 

control.  The burners need to operate in the extreme low range of the CV but the control valve 

cannot be allowed to completely shut off.  In the low range of most valves, proper flow rates are 

not accurate and control becomes very unstable.  COT allows the PID loops to operate for a set 

period of time in manual at a preset position until the burners are all started and flows are at their 

mid-range positions more capable of accurately being controlled.  Then the PID algorithms take 

effect in Auto and the PID loops begin the process of controlling the temperature in the furnace. 

To the operator, the system appears to be in auto but in the program, the PID algorithm is being 

controlled in manual until the auto mode is capable of accurately controlling the PID block.  

COT is to be used only in start-up situations or in recovery operations in which it is necessary to 

operate at a low-end setting to keep the burner system from shutting down. 
  

When operating in a mode such as COT or Maintenance and when the mode is removed, the loop 

should resume its former status.   

 

Use a toggle input from the HMI and the following logic to program bits for A/M, L/R, COT, 

and Maintenance. 
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AutoAuto
B3:0/0 Error1

B3:0/0

Remote
B3:1/0 Error2

B3:1/0
Remote

 
 

Use of toggle bits to turn on a mode may not at first resemble a seal or latch circuit but in fact 

they act in a manner similar to both.  The toggle bit (B3:0/0 or /1) may be turned on by an 

operator through the HMI and will remain on until the operator removes the toggle or until the 

NC contact logic interrupt the flow.  When this happens, the circuit reverts to the safer off state.  

In the example of auto/manual (bit B3:0/0), the bit will turn off to the manual state.  Note that the 

actual state of the SLC Auto/Manual bit is reversed from this logic.   

 

Loops within Loops 
 

The discussion now describes multiple PID blocks used to control a process. 

The following example shows how a PID loop can be imbedded within another PID loop: 

Level Probe

Level PID Block

Level Probe = PV

Setpoint from 

Operator or Remote

Cv output to Flow PID

Level = xxxx

Flow PID Block

Flow Meter = PV

Valve = Cv

Setpoint from PID 

Level Block

 
 

In the example above, the inner loop is the flow valve with its setpoint the CV from the Level 

PID block.  The outer loop is the Level PID block controlling level in the tank. 
 

To successfully tune loops such as these, it is important to establish the order for tuning the 

loops.  It is also important to establish parameters for tuning them.   

 

1. Tune the inner loop first.  In this case, tune the Flow PID loop first. 

 

2. Establish comfortable tuning parameters for it and then proceed to tune the outer loop.  

Fig. 19-104 

Fig. 19-105 
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The outer loop should be tuned to respond more slowly than the inner loop.  The outer 

loop in the example is the Level PID loop.  Try to tune it to respond about 2 to 10 

times slower than the inner loop. 

 

3. Stability problems occur in general if the two loops are tuned too closely together or 

the outer loop is tuned to respond more quickly than the inner loop.  So, keep the 

inner loop fast, outer loop slow and observe any instability.  Ramp blocks should not 

be used on PID blocks such as these unless they are very quick acting.  The inner loop 

should not have a Ramp block.   

Level Probe

Level PID Block

Level Probe = PV

Setpoint from 

Operator or Remote

Cv output to Flow PID

Level = xxxx

Flow PID Block

Flow Meter = PV

Valve = Cv

Setpoint from PID 

Level Block

Ki term rather slow

Ki term rather fast

 
Fig. 19-106  Loop in a Loop 

Whether a PLC or a DCS is better at implementing Process Control: 
 

We consider whether it is better to program the process in a DCS or PLC system today.  We must 

consider each element of the list given below.  Which is more efficient and which will give the 

best return for the customer.  Remember the PLC can program in either Ladder or FBD, the 

language most like that of the DCS people.  Also remember that the DCS will probably need a 

PLC also to mop up the digital part of the job.   

* Each controller and its associated I/O  

* Alarm management  

* Batch/recipe and PLI  

* Redundancy at all levels  

* Historian  

* Asset optimization r 

* Fieldbus device management  

What is beyond the PID function?  Try Kalman Filter for starters.   Give Student Dave at 

https://www.youtube.com/watch?v=FkCT_LV9Syk or 

https://www.youtube.com/watch?v=NT7nYv9Ri2Y a try. 

 

https://www.youtube.com/watch?v=FkCT_LV9Syk
https://www.youtube.com/watch?v=NT7nYv9Ri2Y


 Ch 19 PID Block  88 

 

Summary 

This chapter has the purpose of taking the programmer from the state of asking “What is a PID 

loop” to being able to program a PID loop, implement a faceplate, consider how more than one 

PID block can be combined to control complex processes and encourage the programming of at 

least one PID project complete with tuning and HMI panel. 

A student should be able to accomplish each of the steps listed above from the examples in the 

chapter and implement a PID process in the laboratory.   

Students should also be able to read a P&ID and interpret the parts of the P&ID that can be 

implemented in a controller including the PID algorithm. 

HMI considerations also should be heeded and alarms that control the mode of the PID block 

were discussed. 

Several Lab Text Labs expand on the discussions of this chapter.  They may be found in the Lab 

Text under: 

Chapter 21 Gear Motor Speed Control - PID 
Chapter 22 Ball-in-Tube - PID 
Chapter 23 Tape Rewind – PID+ 
Chapter 24 Valve on Wall 
Chapter 25 Tank Over Tank 
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1. Lab 19.1  PID  
 

Use the Extruder/Mixing System making Dog Food of Fig. 19-60 to design a PID 

controller for the Fat Valve.  A potentiometer may be present and (if present) may be 

used to represent the motor speed.  Input the potentiometer into a second analog input.  

To simulate the change of speed of the motor, change the analog value from the pot.  

Demonstrate the running face-plate with auto-manual and local-remote to the instructor.  

When the PID algorithm crosses between auto and manual or between auto-remote and 

auto-local provide a bump-less transfer (optional).  You may program the A-B and 

Siemens processors in either Ladder or FBD.  Both processors must be demonstrated and 

their PID control discussed in a lab report.  The Siemens process is the ball-in-tube and 

the A-B process is the water valve. 
 

2. Lab 19.2  Advanced PID 
 

Add logic to PID Lab 17.1 to program to ramp from the old setpoint to a new setpoint 

using a ramping block.  Program the ramping only for the remote mode (although the 

ramping function typically done in all automatic modes since it is needed to protect the 

process).  When a new value is entered in the remote Sp entry location, the PID’s Sp is 

not to immediately change to the new Sp, but rather it is to be ramped up or down from 

the present value (found in the Pv).  Save the Pv when the new Sp is detected and 

determine whether the Pv is below or above the new Sp.  Set a seal coil or latch coil to 

remember which way the ramp is going (either up or down).  Also, start a timer to time 

out each 5 to 10 seconds.  When the timer times out, add a small amount (delta) to the 

new Sp and then compare it to the Remote Sp.  If the ramped Sp went past the Remote 

Sp, stop the ramp and put the Remote Sp in the PID’s Sp.  Then end the ramp program 

and wait for another Sp change.  Also, stop the ramp if the PID loop is taken to manual 

from auto.  Add a fault circuit that detects if the flow is dangerously low for the value of 

the output.  If this kind of fault occurs, the PID algorithm might begin to wind up (read 

about anti-reset-windup in the PID section of the A-B book).  If the low-flow fault occurs, 

blink an alarm light on the PanelView and turn the PID block to manual. Set the bit in the 

alarm banner. 
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Exercises 
 

1. When a PID controller is in remote, is the mode in auto or manual?   

 

2. T/F  Windup of the controller is possible in manual mode? 

 

3. T/F  The controller performs exactly the same whether the controller is set for E = PV – 

SP or E = SP – PV. 

 

4. What is the purpose of the small triangles on the left and right side of the bar graphs of a 

faceplate? 

 

5. List the function of the following ISA symbols: 

 

   LT 

   LIC 

   FIC 

  dTC 

 

6. The process engineer says that you are to move the PID controller from auto to manual if 

any of the analog signals (4-20 mA) are invalid in the low range.  Show with an example 

how to accomplish this in ladder logic. Assume the analog inputs are in slot 5. Label all 

rungs explaining your logic.  

 

7. A temperature profile of two different TT’s is to be added together in varying percentages 

to provide the PV for a PID controller.  Show with an example how to accomplish this in 

adder logic. Provide a mechanism so that if the percentage is not 100% that the PID block 

will only run in manual mode. Label all rungs explaining your logic.  You should show 

the PID block but do not provide logic for the SP or CV. Assume the analog inputs are 

wired to a 4-20 mA  analog card in slot 3. 

 

8. A speed sensor has a high and low alarm attached to it.  The signal from the sensor is 

transmitted to a computer.  Draw a P&ID of the speed signal transmitter, high alarm and 

low alarm.  Assume the signals are attached to a computer and are field mounted.   

 

9. A differential pressure transducer transmits a signal that is used for flow.  However, flow 

is proportional to the square root of the differential pressure.  An analog input card is to 

be used with range 1-5V input for the PV and an analog output card is to be used for the 

CV, range 1-5V. The SP is to be input from an HMI.  Draw the P&ID showing the 

mathematical calculation of the square root. Any symbol type is appropriate. Then write a 

program to control the flow using the analog cards listed. Assume the input card is in slot 

4 and the output card is in slot 6. 

 

10. In some temperature control, the output device is a switch that turns on or off a resistor to 

produce heat.  If the output of a PID block is fed to a discrete output that can only turn the 

resistors on or off, write a program to turn the discrete output on or off a proportion of 10 

seconds based on value of the CV.  Assume the output CV can range only from 0 to 100 

and is its value is found in a storage location. 

 

11. Build a lag controller capable of a 5 second lag with value changes each .5 second.  Build 

a lag controller capable of an x second lag with value changes each y second.    
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12. Using either the PID blocks from A-B or Siemens, provide a program that will work in 

auto mode for the following P&ID.  Use variables as inputs, outputs and internal 

variables as necessary.  Describe these variables in a table. 

 

  
 

 

13. Write logic to provide a 30-second lag given that the variable is to be updated each .1 

second.  Use A-B ladder format to demonstrate your answer.  

 

14. Using either the PID blocks from A-B or Siemens, provide a program that will work in 

auto mode for the following P&ID.  Use variables as inputs, outputs and internal 

variables as necessary.  Describe these variables in a table. 
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15. At the end of Ch. 19 is an article: 
 

A Discussion Comparing DCS and PLC/SCADA for Process Control 

 

DCS and PLC/SCADA – a comparison in use 
 

The author stipulates: 

It may surprise you to know that PLC, HMI and SCADA implementations today are 

consistently proving more expensive than DCS for the same process or batch 

application. CEE finds out more… 
 

What does the author claim for the basis of his arguments and what would you do as a 

PLC programmer to counter these claims?  Be specific: 

 

 

16. Using either the PID blocks from A-B or Siemens, provide a program that will work in 

auto mode for the following P&ID.  Use variables as inputs, outputs and internal 

variables as necessary.  Describe these variables in a table.  

 

 
 

17. Give an example of multiple inputs being used instead of just one value for the PV 

(Process Variable) of a PID Loop.  Write a program using either A-B or Siemens to 

demonstrate your answer.   

 

18. An example was given in class describing how to control the pressure in a steel furnace 

even when the door was opened.  Describe of how you would accomplish this.  Be 

specific: 
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Stack Damper

Furnace Door

Pressure 

Sensor

Furnace Pressure PID Block

Pressure Sensor = Pv

Operator entry of 

  Furnace Pressure = SP

Position of Stack 

  Damper = Cv

Operator Entry

Furnace Pressure = xxxx

 
 

19. If an input range is listed as 0 mA to 21 mA range is from 0 to 32640 and we want a 4-20 

mA.  What is the numeric range of a 4-20 mA signal? 

 

20. A good value for P for a servo:_______________________________________________ 

  

21. A good cyclic time to update the PID Control for a servo:__ _______________________ 

 

22. A good value for P for a water loop:___________________________________________ 

  

23. A good cyclic time to update the PID control for a water loop:______________________ 

 

24. A good value for P for a temperature loop:______________________________________ 

 

25.  A good cyclic time for update of the PID control for a temperature loop:_____________ 

 

26. Name a PID control loop that does fine with no derivative component:_______________ 

 

27. Name a PID control loop that is unstable if the derivative is left at zero:______________ 

 

28. The following program is a starter program to control the wind-up of the tape.  To start 

understanding it, provide comments for each statement in the program listing.  All 

statements are found in the cyclic interrupt program OB30 which is run each 100 ms.  

The individual motor programs can be used to control the speed portion of the gearmotor 

project discussed in the chapter. 
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29. The following program is a starter program to control the control of water level in the top 

tank.  To start understanding it, provide comments for each statement in the program 

listing.  All statements are found in the cyclic interrupt program OB30 and start-up 
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program OB100.  OB30 is run each 1000 ms (1 sec). 
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