Chapter 18 — Planning Tasks

Introduction

As an engineer in controls work, one bumps into problems with timing and task planning on a
regular basis. It is never expected but there are times when the problems of computer timing
seem to beg to be considered. Usually, the problem is simple and only takes a few minutes of
our day. Other times, the problems of tasks being shared and I/O read are a problem worth
giving much time to. The lyrics of the song below tell of a poor guy who didn’t plan well and
was stuck. Give a listen on the youtube version if led. See why poor Charlie was forever stuck
on the MTA.

“The M.T.A.

The Kingston Trio

These are the times that try men's souls

In the course of our nation's history the people of Boston have rallied bravely whenever the rights
of men have been threatened

Today a new crisis has arisen

The Metropolitan Transit Authority, better known as the M.T.A.

Is attempting to levy a burdensome tax on the population in the form of a subway fare increase
Citizens, hear me out, this could happen to you!

Well, let me tell you of the story of a man named Charlie

On a tragic and fateful day

He put ten cents in his pocket, kissed his wife and family

Went to ride on the MTA

Well, did he ever return?

No he never returned and his fate is still unlearned (what a pity)

He may ride forever 'neath the streets of Boston

He's the man who never returned

Charlie handed in his dime at the Kendall Square station

And he changed for Jamaica Plain

When he got there the conductor told him, "one more nickel"
Charlie couldn't get off of that train!

But did he ever return?

No he never returned and his fate is still unlearned (poor old Charlie)
He may ride forever 'neath the streets of Boston

He's the man who never returned

Now, all night long Charlie rides through the station

Crying, "what will become of me?

How can I afford to see my sister in Chelsea

Or my cousin in Roxbury?"

But did he ever return?

No he never returned and his fate is still unlearned (shame and scandal)
He may ride forever 'neath the streets of Boston

He's the man who never returned

Charlie's wife goes down to the Scollay Square station

Every day at quarter past two

And through the open window she hands Charlie a sandwich

As the train comes rumbling through!

But did he ever return?

Ch 18 — Planning Tasks 1

https://www.google.com/search?client=firefox-b-1-d&q=Kingston+Trio&stick=H4sIAAAAAAAAAONgVuLUz9U3MMpNMshbxMrrnZmXXlySn6cQUpSZDwBUJArtHQAAAA&sa=X&ved=2ahUKEwjtzc6z5rzlAhUMVa0KHSw6C2gQMTAAegQICxAF

No he never returned and his fate is still unlearned (he may ride forever)
He may ride forever 'neath the streets of Boston

He's the man who never returned

Pick it Davey

Kinda hurts my fingers

Now, you citizens of Boston, don't you think it's a scandal

How the people have to pay and pay?

Fight the fare increase, vote for George O'Brian

Get poor Charlie off the MTA!

Or else he'll never return

No he'll never return and his fate is still unlearned (just like Paul Revere)
He may ride forever 'neath the streets of Boston

He's the man who never returned

He's the man who never returned

He's the man who never returned

Et tu, Charlie?”

Source: LyricFind

Hopefully you will never experience the same fate as Charlie! The song is old but not planning
especially regarding computer timing, can lead to some serious catastrophic problems.

An Anecdotal Concerning Timing

One simple problem encountered some years ago had to do with a high-speed counter card. The
card was purchased to count the pulses from a pulse output flow meter dealing with flow to a
mixer. The flow was to turn off within .1 gallon of total flow from the liquid’s feed line. This
was not happening. Every time the ingredient was called, the accuracy was off by .7 or .8 gallon,
either plus or minus and never predictable. The time spent on this was of great concern because
there was an obvious waste of each batch that had to be scrapped since the liquid was so far out
of specification. It was also pointed out that the original flow controller was able to fill the batch
to within .05 gallon repeatedly.

Everything looked to be in order. The pulses were coming into the high-speed card accurately
and the PLC was scanning the card often enough to read and turn on an output every 10 ms or so.
So where was the problem?

Not until a program was written to show the delay between the update from the high-speed
counter card to the CPU was the source of the problem revealed. The high-speed counter card
was updating but not updating the count to the CPU more than about every .75 seconds, enough
to cause the .7 or .8 gallon error. The program, while simple to write, revealed the problem to
the engineer. The card was obviously flawed and needed to be replaced. The question became
one of was this for this card alone or was the problem with all cards of this design. That question
was answered by calling the manufacturer and asking that they put the card on a bench to test for
the same problem. When this occurred, it was found that the problem was across the board and
the card was essentially not able to control the flow of liquid accurately enough to accurately fill
our batch. Another solution would need to be found.

A solution was found that was accurate enough and the problem solved. The manufacturer was
embarrassed by this obvious flaw in the design of his I/O card and the problem was only exposed
by writing a program to show the delay between updates of the pulsed input to the cpu. He

Ch 18 — Planning Tasks 2

https://www.lyricfind.com/

admitted that the card was purchased from a third party (not associated with the manufacturer)
and that the design had never been thoroughly checked out (or they would have found the
problem themselves).

The solution was to create a frequency divider for the pulsed input from the flow controller and
read the inputs into the cpu directly at a slower rate that was able to be updated by the discrete
I/0O card on the PLC. To slow down the pulse rate was acceptable in this case since the accuracy
of the cpu’s scan rate exceeded that needed to turn off the flow valve after a setpoint had been
reached. Problem solved!

The following shows a description of the original pulse followed by a frequency divider and then
a second frequency divider. It was tempting to build this frequency divider using chips but that
is not typically acceptable in a factory environment. A Red Lion counter gave the desired output
of a 4:1 count with four input pulses giving a toggled output. This output was slow enough to be
read successfully by the digital input on the PLC. The PLC was a Modicon.

orignal [[[T T M MM I I eI

Pulse

4 N N A (N S B S B

Pulse

Quarter

Freq Pulse

Fig. 18-1

Both A-B and Siemens have methods of solving problems such as the one above. Both A-B and
Siemens have aggressive methods for dealing with timing issues.

Both use a method to read I/O on an immediate basis rather than from the scan’s own 1/O update.
If necessary, they allow an instruction to have an immediate read from an input or an immediate
write to an output. This is necessary for the processor to guarantee some of the simple high-
speed problems of a process. The rest of the chapter outlines some of the more sophisticated
methods for problem solving of timing issues and diagnosis of problems when they arise. In
Chapter 19, it will be obvious that a scheduled program is needed to help in providing a best
possible performance from the PID loops being programmed.

Allen-Bradley - Managing Tasks

The default RSLogix 5000 project provides a single task for all logic. While this is sufficient for
many applications, some need more than a single task to perform the requirements of the project.

A Logix5000 controller supports multiple tasks to schedule and prioritize the execution of your
programs based on specific criteria. This balances the processing time of the controller.

e The controller executes only one task at one time
e A different task can interrupt a task that is executing and take control

Ch 18 — Planning Tasks 3

e Inany given task, only one program executes at one time

A Logix5000 controller supports three types of tasks:

Continuous
Periodic
Event

The continuous task runs in the background. It is the Main program and its sub-programs. It
contains most of the code for the program. The periodic task runs on a clock. Programs such as
a PID algorithm needs a constant clock execution time to correctly calculate a new output for the
PID block. Also included in the PID algorithm is the requirement that the analog values be
collected in a timely manner. That is, the analog values cannot be from about a scan ago. They
must be refreshed just before needed in the clocked program. An event task runs based on an
interrupt. These programs must be guarded in that not too many programs must be created or
their frequency must be low in order to be run successfully.

To assign a priority to a task, use these guidelines:

“

If you want

Then

Notes

This task to interrupt another
task

Assign a priority number that is less
than (higher priority) the priority
number of the other task

Another task to interrupt this
task

Assign a priority number that is
greater than (lower priority) the
priority number of the other task

e A higher priority task interrupts
all lower priority tasks

e A higher priority task can
interrupt a lower priority task
multiple times

This task to share controller time
with another task

Assign the same priority number to
both tasks

The controller switches back and
forth between each task and
executes each one for 1 ms

“

Leave enough time for unscheduled communication. Unscheduled communication occurs only
when a periodic or event task is not running. If you use multiple tasks, make sure that the scan
times and execution intervals leave enough time for unscheduled communication. Use these

methods to plan enough unscheduled communication time.

1. Verify that the execution time of a highest priority task is significantly less than its

specified period.

2. Verify that the total execution time of all tasks is significantly less than the period of the

lowest priority tasks.

Ch 18 — Planning Tasks

Manually check for overlaps using the following steps:

1 1In the Contreller Organizer, rght-click Main Task and
choose Properties.

548 MainTask =
E1-£% MainProgram

|&] Program Tags
“H# MainRoutine

The Task Properties dialos box appears.

2. Click the Monitor tab.

m Task Properties - Task

Number of overlaps since the counter was last reset. —

3. Click OK.
Fig. 18-2

Module Input Data State Change Trigger:

To trigger an event task based on data from an input module, use the module Input Data State
Change trigger shown below:

i Task Properties - Task 1

Let an event trigger this task. —pme

Let data from an input module trigger the task, —e
Let this input tag trigger the task, —pme

When the task is done, do not update digital
outputs in the local chassis, ——pme

Fig. 18-3
Ch 18 — Planning Tasks

Some A-B I/0 has the ability to send the 1/O status to multiple processors. This is referred to as
an 1/0 Module Trigger to an event Task. We will not discuss this topic further here since the 1/0
is not present in the lab and we do not need this capability to process any information. However,
do remember that the more sophisticated processors have this capability and it should be
considered when planning a project.

Siemens

Siemens, like Allen-Bradley, has a sequence of events that occur when the processor starts up
and then services the 1/0 and solves logic during the scan of the processor. It is roughly
described in the following diagram:

13

STARTUR

A
=
=

A Clears the | {image) memory area (1) Writes Q memary to the physical outputs
B Initializes the outputs with either the (2} Copies the state of the physical inputs to |
last walue or the substitute value Memonry
C Executes the startup OBs (3 Executes the program cycle OBs
D Copiesthe state of the physicalinputs @ Perdfonns selftest diagnostics
to | memory
E Stores any interrupt everts into the {8) Processes interrupts and communications
gueues to be processed after entering during ary part of the scan oycle
FLUM maode

F Enables the writing of QI memory to the
physical outputs

Fig. 18-4
Operating modes of the CPU

The CPU has three modes of operation: STOP mode, STARTUP mode, and RUN mode.

“The system guarantees that the scan cycle will be completed in a time period called the
maximum cycle time; otherwise a time error event is generated.

e Each scan cycle begins by retrieving the current values of the digital and analog outputs
from the process image and then writing them to the physical outputs of the CPU, SB,
and SM modules configured for automatic 1/O update (default configuration). When a
physical output is accessed by an instruction, both the output process image and the
physical output itself are updated.

e The scan cycle continues by reading the current values of the digital and analog inputs
from the CPU, SB, and SMs configured for automatic 1/0O update (default configuration),
and then writing these values to the process image. When a physical input is accessed by

Ch 18 — Planning Tasks 6

an instruction, the value of the physical input is accessed by the instruction, but the input
process image is not updated.

e After reading the inputs, the user program is executed from the first instruction through
the end instruction. This includes all the program cycle OBs plus all their associated FCs
and FBs. The program cycle OBs are executed in order according to the OB number with
the lowest OB number executing first.”

Interrupt latency

The interrupt event latency (the time from notification of the CPU that an event has occurred
until the CPU begins execution of the first instruction in the OB that services the event) is
approximately 175 psec, provided that a program cycle OB is the only event service routine
active at the time of the interrupt event.

Understanding time error events

The occurrence of any of several different time error conditions results in a time error event. The
following time errors are supported:

e Maximum cycle time exceeded
e Requested OB cannot be started
e Queue overflow occurred

The maximum cycle time exceeded condition results if the program cycle does not complete
within the specified maximum scan cycle time. See the section on "Monitoring the cycle time in
the S7-1200 System Manual” (Page 80) for more information regarding the maximum cycle time
condition, how to configure the maximum scan cycle time, and how to reset the cycle timer.

The requested OB cannot be started condition results if an OB is requested by a cyclic interrupt,
a time-delay interrupt, or a time-of-day interrupt, but the requested OB is already being executed.
The queue overflow occurred condition results if the interrupts are occurring faster than they can
be processed. The number of pending (queued) events is limited using a different queue for each
event type. If an event occurs when the corresponding queue is full, a time error event is
generated. All time error events trigger the execution of OB 80 if it exists. If an OB 80 is not
included in the user program, then the device configuration of the CPU determines the CPU
reaction to the time error:

e The default configuration for time errors, such as starting a second cyclic interrupt before
the CPU has finished the execution of the first, is for the CPU to stay in RUN.

e The default configuration for exceeding the maximum time is for the CPU to change to
STOP.

Recording of measured values with the trace function:

The trace and logic analyzer function can be called in the device folder in the project navigator
under the name “Traces”. You record device tags and evaluate the recordings with the trace and
logic analyzer function. Tags are for example drive parameters or system and user tags of a
CPU. The maximum recording duration is limited by the memory size. How much memory is
available for the recording depends on the hardware used.

Ch 18 — Planning Tasks 7

PrOJlecx. Edic wiew Inserr Online .opnnns Taals IEEiL-Tesr. wlmdot Help TFF oools - . Totally Intagrated Automation
3 HE seveprojen & M 5 T X S x (2 G T [0 G B RS Gooriine ¥ Gaokine A IR x PORTAL
| Devices | ;.
Lo I T —_— 3 =
00 | i Trece dete: |Trace1 [Messuramants] - R = G.El =
-3
~hmeres | @00 REE TAQ TR MM IS EE= & @ il
B sddnew =
[Tracel [Measurements] @ =
=[Wiicruisi. [= i 4
I bevice c = M Tag_1 [EME10] -
% oline.. o 157 - | Tag_4 [EmMz0]
b [Progra ® 2 . W Tag_3 [EMwW4]
i ghl £ 104 — M Tag_2 [5ME11]
P S Techiy | i W T=g_3 [EMWa]
» a Extern... = a S — W T=g_1 [EME10)
b g FLCEags []
b Pl da, !
b [wiatch &, | [| [|_Tag s pamz6.0] ';;
= T
il Traces
&5 Progra
S Pl alar..
3 0l i [»
=) Teut lists
b g loalm.. | @
..- 3 Orline ¢ 5 Mape Deto 1. | Addeess Colar | WMin AMeR b L = S L) unit
RoAWe S, [w] 17 % b “Tegn® = wneio [N 0 20 (B [=
S =k |
[T [*] |2 |& % "maa Dword EMDED 1 20 i3
+ | Detals view [<] " =]
Trace handling @
hlame= Trace configurati.. Comment < Insrolled ooces Active Sratus e MCasUremEnTS Trie
1 |55 Tree=1 |-k| = 1 5 S Trae=1 [inseswe | 1 g o Traeel M a
-
2 THig_Int_value v = | _'.'! 2O s Trignt value Lk
] 1 | B3| A %] 1l | » | 3 1 | 3
| Properties | T infa C}‘,g Diagnostics |
—_— L —
General
General fl o . [
» Configuration i gnets
] i B e [Tk
3 Ouerview J&= 1.1 crutsie-a [semings
—=

While all this may seem rather bothersome, the exercise to make sure the scan has enough time
and there is sufficient memory to accomplish the task is very important. It is too late if the
project is nearing start-up to find out these problems. Then they are a catastrophe.

Timing issues can definitely stop a good project in its tracks. There are a number of software
issues that can be hard to conquer but timing issues are one of the worst.

A Timed Interrupt Program

The following program is an example of a timed interrupt program saved in OB30 (Siemens).
This program is found in Chapter 19 since the program uses the PID block. However, the use of
a timed interrupt program is essential for proper execution of the program. Back in Chapter 10, a
timed interrupt program was used to count calories. What was needed was a .1 second or .01
second interrupt that calculated the number of calories in the last 100 or 10 msec and added them
to those already expended. The result was a graph of calories that grew with time and the load
on the bike measured in watts from the light bulbs and by the ache in the legs.

The following program has a problem in that the program could be executed in any time range
from .1 second to .001 second. It is primarily determined by the accuracy of the speed which is a
function of the number of pulses received in the time period.

Ch 18 — Planning Tasks 8

First, 10 msec was picked and found that the maximum number of pulses in the time period was
12, not enough to accurately control the PID algorithm. Who wants a speed control that can
only be controlled to 1 part in 12? That is not a good outcome. However, if one extends the time
period, we lose the ability to make quick changes in the function. The function is the control of a
simple dc motor with feedback control through an encoder. The encoder was simply not accurate
enough to allow an increase in the update speed of the program. So, for 100 msec time period,
we would get about 120 pulses for an extremely low accuracy encoder.

The following figure shows the configuration of the system including the cyclic interrupt

(OB30).
Project10 » PLC_1 [CPU 1214C DOUDCTDC]
Devices

S @: gt [PLC_1[CPU 1214C] 2l

¥ | 7] Project10 E ,
B Add new device

iy Devices & networks

~ [PLC_1[CPU 1214C DC/D._..
......... B 103 102 101 1 2 3

% Online & diagnostics - sitmens

v g Program blocks
B Add new black B
3 Cyclic interrupt [O... T R ——
& Main [OB1]

b g System blocks

[Technclogy objects

External source files

E PLC tags

[PLC data types

|z Watch and force tables

i
o

v v v v v

Fig. 18-6

Ch 18 — Planning Tasks 9

The following figure describes the input waveform configuration. The input must be allowed to
be read very fast — in this case, 20 microseconds.

Project10 » PLC_1 [CPU 1214C DUDUDC]

|E Topology view

g [PLC_1[CPU 1214C]

ElE

= 4l

ECY

&, Properties

JGeneral " 10 tags || System constants " Texts |

General
» Digital inputs
» Digital cutputs
10 addresses
b A2
.
v General
Catalog informaticn
w Digital inputs
Channelo
Channell
Channel2
Channel3
IO addresses
+ High speed counters (HSC)
w» HSC1
General
Function
Reset to initial values
Event configuration

[l

T Al | &al

Channel address Iii 0

Input filters: | 20 microsec

Enable rising edge detection

Event name I

Hardware interrupt I

Prionty [

Enable falling edge detection

Event name I

Hardware interrupt l

Priority I

(W) Enable pulse catch

Fig. 18-7

The following describes the high-speed counter configuration. The input is HSC_1. Wiring
terminal and address is found in the next figure:

110 addresses
w High speed counters (HSC)
R gHsC1

General
Function

T o | aaw

Resetto initial values | |
Event configuration
Hardware inputs
110 addresses

b HSC2

b HSC3

b HSC4

b HSCS

b HSC6

<] 1]

J General “ 10 tags “ System constants H Texts |
~ General |:|_
. . HSC1
Cataleg information
Digital inputs
T Bigralinpu > General
Channel0
Channell Enable
Channel2 B
Channel3 [#] Enable this high speed counter

Project information

» Function

Name: |[HSC_1
Comment: ~
v
Type of counting: | Count 2
Operating phase: |NB counter ‘v‘
Fig. 18-8
Ch 18 — Planning Tasks 10

The input to pulse A is wired to 14.1:

| General

w General

Catalog information > Hardware inputs
w Digital inputs
Channel0
Channel1
Channel2
Channel3
/0 addresses
= High speed counters (H5SC)
* H5C1
General
Function
Reset to initial values
Event configuration
Hardware inputs

I/0 addresses
Fig. 18-9

The input is addressed in the program as 1D1000. This address appears in the program statement
in the logic below:

I General

w General
Cataleg information
« Digital inputs
Channelo
Channell
Channel2
HDE::':::::S --- (Automatic update)
+ High speed counters {H5C) Automatic update
* H5C1
General
Function
Resetto initial values
Event configuration
Hardware |nputs

> |ID addresses

IO address

Fig. 18-10

Ch 18 — Planning Tasks 11

The following program reads the input and determines the number of pulses since the last scan.
In this case, the pulse count is the count in the last 100 msec.

- Network 1:

ADD SUB
Real Real MOVE
EN — EN — E—
%ID1000 DU — ¥ input #input — IN1 %MD6 #input —iN %MD2
Tag 1" —mINT ®MD2 OUT — " In_New % OUT1 — "In_Old"
2.0 IN2 3 *In_Old" IN2
Fig. 18-11

A Problem Using Timed Interrupt Programming

For the process below, the roll conveyor carries boxes from left to right. If a box is too close to
the one before it, the spacing bar comes up (arrow) to hold it back until a constant spacing is
achieved. If a box is spaced in excess of the minimum, the box is allowed to pass on with no
blocking. Write a program in ladder logic to control the blocking bar based on the photo-eye and
an input from a pulse tachometer. Assume the pulse tach is a dint word with a constantly
increasing number of pulses each time read.

N
@)

00/6106/0/0.6 ooooooooéqboo OCOT0000

Fig. 18-12

This problem uses the pulse counter described in the program above to find the movement of the
conveyor and the boxes per unit of time. The problem should be run about every 10 msec since
the movement of the boxes probably will be able to move less than % inch in that time and the
control of the spacing boxes would be adequate based on this ¥ inch requirement.

The photo-eye would see the leading edge and the trailing edge of the previous box can be
tracked. When the box’s leading edge moves to the blocking bar, a decision is made whether to
activate it. If activated, then the tracking continues until the distance from the last trailing edge is
exceeded and the blocking bar is de-activated ot blocked.

This problem is assigned in the Problems section.

Ch 18 — Planning Tasks 12

Another Anecdotal:

In 1972, this author was placed on a project team that was responsible for the automatic tracking
of glass on a cutting machine for a major glass manufacturer. The team leader was experienced
and confident the project would proceed well. The other team member was experienced as well.
| was the newbie.

The team leader in early 1973 quit. And the other team member, while willing to help, was
relegated to the bench due to competition between plants. The new plant was purported to be
non-union and the plant that he worked for was union. Thus, | was the last one standing.

The project was to track glass on 66 sections of conveyor. The prior job for which the team
leader and other member had worked had only 6. They used interrupts for each pulse that came
in to the computer which represented each 1.5 inches of travel of the conveyor. | looked at the
interrupt light for this interrupt category and it was on pretty bright. What would happen if the
number of interrupts increased by a factor of 10? | had no idea. And | was alone. So what did |
do?

| changed the program to a scanned program that would execute each 8 msec. In this format,
multiple pulse inputs would possibly change in each execution of the program but there would be
only one interrupt each 8 msec. This change, while not monumental, was significant. | just
implemented it. | did not ask. | just went ahead.

Later, my boss was discussing something along the lines of the portion of the program in
question and I happened to mention that | had changed it to a scanned program. | thought I
would be fired from the look on his face. I wasn’t. He reviewed with me the change and went
along with it.

The program worked. It collected data from all 66 conveyors and tracked, not at 1.5 inch
accuracy but at .75 inch accuracy since | executed on both the rising and trailing edge of the
signal. So, it was twice as accurate. The light was also not as intense as the light on the prior
program. It seemed to run ‘cooler’.

I don’t know if this change ‘saved’ the project. I don’t care. I just know that it worked the way |
programmed it.

And, I became a firm believer in the expression “it is better to ask for forgiveness than to ask for
permission.” You see, I doubt if my boss would have gone along with a ‘theory’ that the
program would fall apart once moved to 66 conveyors using interrupts. It would have been hard
to prove one way or the other and he would have reverted to the way it had previously been done.
| was responsible for the project and was conservative in the use of time. Neither could prove
absolutely the right way to go. It worked the new way and, in the process, saved money on the
future purchases of computers used in the work in that the original computer cost about $100K
and the ones that could now be purchased would cost only about $30K, a savings of $70K. Not
bad.

Ch 18 — Planning Tasks 13

Finally

The following table is found in the S7-1200 Programmable Controller System Manual. The table

gives execution times for instructions in the PLC. It will be used in a problem at the end of the
It is useful to calculate the execution time for your programs. Use it!

chapter.

Table A- 49 Performance

Type of instruction Execution speed
Direct addressing (I, Q and M) ‘ DB accesses
Boolean 0.08 ps/instruction
Move Move_Bool 0.3 pslinstruction 1.17 ps/instruction
Move_Word 0.137 psfinstruction 1.0 psf/instruction
Move_Real 0.72 psfinstruction 1.0 ps/instruction
Real Math Add Real 1.48 psfinstruction 1.78 ps/instruction
Note

Many variables affect measured times. The above performance times are for the fastest

instructions in this category and error-free programs.

Ch 18 — Planning Tasks

14

The following pages are from the Siemens Text:
Programming Guideline for $7-1200/1500 Entry ID: 81318674, V1.6, 12/2018

They summarize changes and upgrades to the Siemens Portal Language from Version 14 — TIA
and later:

"

2.14 STOP mode in the event of errors

In comparison to S7-300/400 there are fewer criteria with the S7-1200/1500 that
lead to the "STOP” mode.

Due to the changed consistency check in the TIA Portal, the "STOP” mode for S7-
1200/1500 controllers can already be excluded in advance in most cases. The
consistency of program blocks is already checked when compiling in the

TIA Portal. This approach makes the S7-1200/1500 controllers more "fault tolerant
to errors than their predecessors.

Advantages

There are only three fault situations that put the S7-1200/1500 controllers into the
STOP mode. This makes the programming of the error management clearer and

easier.
Properties
Table 2-18: Response to errors of S7-1200/1500
Error $7-1200 S§7-1500
1. | Cycle monitoring time RUN STOP
exceeded once (when OB80 is not
configured)
2. | Cycle monitoring time STOP STOP
exceeded twice
3. | Programming error RUN STOP
(when OB121 is not
configured)
Error OBs:
« OBB80 "Time error interrupt” is called by the operating system when the
maximum cycle time of the controller is exceeded.
¢ 0OB121 "Programming error” is called by the operating system when an error
occurs during program execution.
For every error, in addition, an entry is automatically created in the diagnostic
buffer.
Note For S7-1200/1500 controllers there are other programmable error OBs

(diagnostic error, module rack failure, etc.).

More information on error responses of S7-1200/1500 can be found in the online
help of the TIA Portal under "Events and OBs”.

Ch 18 — Planning Tasks

15

2.4 Optimized machine code

TIA Portal and S7-1200/1500 enable an optimized runtime performance in every
programming language. All languages are compiled directly in machine code in the
same way.

Advantages

e All programming languages have the same level of performance (for the same
access types)

¢ No reduction of performance through additional compilation with interim step

via STL
Properties
In the following figure, the difference in the compilation of S7-programs in machine
code is displayed.
2.5 Block creation

All blocks such as OBs, FBs and FCs can be directly programmed in the desired
programming language. Therefore no source has to be created for SCL
programming. Only select the block and SCL as programming language. You can
then program the block directly.

Figure 2-4: Dialog "Add new Block”

Name:
Block_1

Language:

'&; Number:
mtion

Organizmtio
block

. Function blocks are code blocks that store their values permanentlyin instance data blocks,
Function block so that they remain available after the block has been executed.

> | Additional information

[#] Add new and open 0K Cancel

Ch 18 — Planning Tasks

16

2.6 Optimized blocks

2.6

Advantages

2.6.1

Properties

Optimized blocks

S7-1200/1500 controllers have an optimized data storage. In optimized blocks all
tags are automatically sorted according to their data type. The sorting ensures that
data gaps between the tags are reduced to a minimum and that the tags are stored
access-optimized for the processor.

Non-optimized blocks are only available for compatibility reasons in S7-1200/1500
controllers.

e Access always takes place as quickly as possible since the data storage is
optimized by the system and independent of the declaration.

e No danger of inconsistencies due to faulty, absolute access, since access is
generally symbolic

e Declaration changes do not lead to access errors since, for example, HMI
access is symbolic.

¢ Individual tags can be specifically defined as retentive.

¢ No settings required in the instance data block. Everything is set in the
assigned FB (for example, retentivity).

e Storage reserves in the data block enables changes without loss of current
values (see chapter 3.2.8 Downloading without reinitialisation).

S$7-1200: Structure of optimized blocks

Figure 2-5: Optimized blocks for S7-1200
Standard block 1 Optimized block

Optimized

Standard

* No data gaps are formed since larger tags are located at the start of a block
and smaller ones at the end.

e There is only symbolic access for optimized blocks.

Ch 18 — Planning Tasks 17

Example: Setting optimized block access
By default, the optimized block access is enabled for all newly created blocks for

S7-1200/1500. Block access can be set for OBs, FBs and global DBs. For instance

DBs, the setting derives from the respective FB.

Block access is not automatically reset if a block is migrated from a S7-300/400

controller to a §7-1200/1500. You can later change the block access to "Optimized

block access”. After changing the block access, you have to recompile the
program. If you change FBs to "Optimized block access”, the assigned instance
data blocks are automatically updated.

Follow the instructions to set the optimized block access.

Table 2-4: Setting optimized block access

Step

Instruction

1.

Click the "Maximizes/minimizes the Overview” button in the project tree.

Project tree

Devices

Name

¥ _7] ProgrammingGuideline
B Add new device

Navigate to "Program blocks”.

2.6 Optimized blocks

Step

Instruction

3.

Here, you see all blocks in the program and whether they are optimized or not.
In this overview the status "Optimized block access” can be conveniently
changed.

5
T 5
Neme Modified Address Type | Language | Optimized block access i>
| Add new block 1
Ml Mein [OB1) 2/24i12017 -3:47:35 PM os1 oe LAD m
“' LGF_PulseRelay [FE1002. 7-346113PM FE10027 F8 SCL
HEF LGF_SetTime [FB10028] ... 7-3:4640PM FB10028 FB SCL 7’)
" LGF_TimerSwitch [FB100... 45:10 PM FB10002 FB sCL é
@ InstLGF_PulseRelay [DB1] 2017 -3:4620PM DB1 DB DB (42}
@ instLGF_SetTime [0B2] 20242017 -3:46:40PM DB2 DB DB] ?

@ InstLGF_TimerSwitch [DB.. 2/24/2017-346:58 PM DB3 DB DB (v
AN ek v\ VRS RAR AR B NN A N W\/

Note: Instance data blocks (here "Function_block_1_DB”) inherit the status
"optimized” from the associated FB. This is why the "optimized” setting can only
be changed on the FB. After the compilation of the project, the DB takes on the
status depending on the associated FB.

Ch 18 — Planning Tasks

18

Display of optimized and non-optimized blocks in the TIA Portal

In the two following figures the differences between an optimized and a non-

optimized instance DB can be seen.

For a global DB there are the same differences.

Figure 2-9: optimized data block (without offset)

InstLGF_PulseRelay <
Name Data type Start value \:"
< ¥ Input <
2 @@= trigger Bool false s
3 4= set Bool false H
4 g = reset Bool false)J
5 < ~ Output ‘;
6 4= out Bool false
'WWM-—JW/J

Figure 2-10: non-optimized data block (with offset)

InstLGF_PulseRelay

Name Data type | Offset Start va
< ¥~ Input
2 @n» trigger Bool 0.0 Ise
3 |&a» set Bool 0.1 false
4 4w reset Bool 02 I
5 <4 ¥ Output
o FUR QU e BRel |20 | RAE

Table 2-5: Difference: Optimized and non-optimized data block

Optimized data block

Non-optimized data block

Optimized data blocks are addressed
symbolically. Therefore no "offset” is
shown.

For non-optimized blocks the "offset” is
shown and can be used for addressing.

In the optimized block you can declare
each tag individually with "Retain”.

In non-optimized blocks only all or no tag
can be declared with "Retain”.

Ch 18 — Planning Tasks

19

2.6 Optimized blocks

The retentivity of tags of a global DB is directly defined in the global DB. By default,
non-retain is preset.

Define the retentivity of tags in an instance in the function block (not the instance
DB). These settings are therefore valid for all instances of this FB.

Access types for optimized and non-optimized data blocks

2.6.4

2.6.5

In the following table all access types for blocks are displayed.
Table 2-6: Access types

Access type Optimized block Non-optimized
block
Symbolic yes yes
Indexed (fields) yes yes
Slice access yes yes
AT instruction no yes
(Alternative: slice access)
Direct absolute no yes
(Alternative: ARRAY with INDEX)
Indirect absolute (pointer) no yes

(Alternative: VARIANT /
ARRAY with index)

Load without reinitialization yes no

Conversion between optimized and non-optimized tags

It is generally recommended to work with optimized tags. However, if in individual
cases, you want to keep your programming so far, there will be a mix of optimized
and non-optimized data storage in the program.

The system knows the internal storage of each tag, irrelevant whether structured
(derived from an individually defined data type) or elementary (INT, LREAL, ...).

For assignments with the same type between two tags with different memory
storage, the system converts automatically. This conversion requires performance
for structured tags and should therefore be avoided, if possible.

Parameter transfer between blocks with optimized and non-optimized
access

When you transfer structures to the called block as in/out parameters (InOut), they
are transferred by default as reference (see chapter 3.3.2 Call-by-reference).

However, this is not the case if one of the blocks has the property "Optimized
access" and the other block the property "Default access”. In this case, all
parameters are generally transferred as copy (see chapter 3.3.1 Call-by-value).

In this case the called block always works with the copied values. During block
processing, these values may be changed and they are copied back to the original
operand, after processing of the block call.

This may cause problems if the original operands are changed by asynchronous
processes, for example, by HMI access or interrupt OBs. If the copies are copied
back to the original operands after the block processing, the asynchronously
performed changes on the original operands are overwritten.

Ch 18 — Planning Tasks

Recommendation

e Always set the same access type for the two blocks that communicate with
each other.

2.7 Block properties

2.71 Block sizes

For S7-1200/1500 controllers the maximum size of blocks in the main memory was
noticeably enlarged.

Table 2-7: Block sizes

Max. size and number $7-300/400 S$7-1200 S§7-1500
(without consideration of
memory size)
DB Max. size 64 kB 64 kB 64 kB
16 MB (optimized
CPU1518)

Max. number 16.000 65.535 65.535

FC/FB Max. size 64 kB 64 kB 512 kB

Max. number 7.999 65.535 65.535
FC/FB/DB | Max. number | 4.096 (CPU319) 1.024 10.000 (CPU1518)

6.000 (CPU412)

Recommendation
¢ Use DBs for S7-1500 controllers as data container of very large data volumes.

¢ You can store data volumes of > 64 kB with S7-1500 controllers in an
optimized DB (max. size 16 MB).

2.7.2 Number of organization blocks (OB)

With OBs a hierarchical structure of the user program can be created. There are
different OBs available for this.

Table 2-8: Number of organization blocks

Organization block type S§7-1200 S§7-1500 Benefits

Modularization of the

Cyclic and startup OBs 100 100
user program

Separate OB for each

Hardware interrupts 50 50 :
event possible
Delay interrupts 20 Modularization of the
4% user program
Cyclic interrupts 20 Modularization of the
user program
Clocked interrupts no 20 Modularization of the

user program

* As of firmware V4, 4 delay interrupts and 4 cyclic interrupts are possible.

Recommendation
e Use OBs in order to structure the user program hierarchically.

e Further recommendations for the use of OBs can be found in chapter
3.2.1 Organization blocks (OB).

Ch 18 — Planning Tasks 21

2.7.3

Block interface - hide block parameters (V14 or higher)

When calling the block, block parameters can be specifically displayed or hidden.
Here, you have three options that you can configure individually for each formal

Advantages

Properties

Example

parameter.
e "Show’
e "Hide”
L]

L]

L]

- FCs,

Can be used for:

FBs

- In, Out, InOut

Figure 2-12: Hide block parameters

PosAxisControl
Name

I @~ Inpux
3 @ > positonngAu
5 @ powerdn
& @e acknowedge
S @ checkFeeden
e checkFeeden
ar checkfeederd
2 @s mornode
4 @~ Ouput
wa-e eror
@ status
2 4Q-. suwsio

e et (B} o =l
» Block title:

¥ Network 1:

Deta type Defoult value Reton
TO_PariticningAss

Bool MNon-retsin
Bool Non-remzin
Boal Nan-remain
Bool a Non-rer.. [=]
ool Nan-retzin
Bool

"Hide if no parameter is assigned"

Better overview for blocks with many optional parameters

NOORNY

LAERY

=]

Visiblity in block calls in LAD/FBD

(O Show

() Hide

() Hide if no parameter is assigned

B .

| General | Supervisions

"%v HAM engineering

General
Aributes

Vistblity in block calls in LADIFBD
O show

(@ Hide

() Mide #no parameter is assigned

“InstPosAxisContr

ol
“Pos Axis Control”
EN ENO
PositioningAxs 1 — positioningAxis “Global".
Global error —48xs1error
masterPOWeron mm powerOn “Global".
axisTstatus
Global status =4
masterAcknowled §
9¢ —lacknowledge statusiD L xs 15tatus|D
*Global".
masterMenualMo
de — manhode =

*InstPosAxsContr

of

“*PosAxisControl”
[EN ENO
"PositicningAxis 1° —{positioningAxs *Global®
“Global". error p—t2xis 1error
masterfoweron e powerOn *Global".
axis15tatus
*Global". SIRUS
masterAcknowled *Global®.
9¢ —acknowiedne statusiD |— 8xis1statusiD
“Global".
testFeeder —
“Global".
masterManualiio
de — manhiede o

Ch 18 — Planning Tasks

2.8

Note

2.81

Note

New data types for S7-1200/1500

§7-1200/1500 controllers support new data types to make programming more
convenient. With the new 64 bit data types, considerably larger and more precise

values can be used.

More information can be found in the following entry:

In STEP 7 (TIA Portal), how do you convert the data types for the S7-

1200/15007?
https://support.industry.siemens.com/cs/ww/en/view/48711306

Elementary data types
Table 2-9: Integer data types
Type Size Value range
USint 8 bit 0..255
Sint 8 bit -128 .. 127
Ulnt 16 bit 0 ..65535
UDInt 32 bit 0 .. 4.3 Mio
ULInt* 64 bit 0 .. 18.4 Trio (10%8)
Lint* 64 bit -9.2 Trio .. 9.2 Trio
. 16#0000 0000 0000 0000 to
HWord o4 bt 16# FFFF FFFF FFFF FFFF

* only for S7-1500

Table 2-10: Floating-point data types

Type Size Value range

Real 32 bit (1 bit prefix, 8 bit exponent, 23 bit mantissa), -3.40e+38 .. 3.40e+38
precision 7 places after the comma

LReal | 64 bit (1 bit prefix, 11 bit exponent, 52 bit mantissa), | -1.79e+308 .. 1.79e+308
precision 15 places after the comma

More information can be found in the following entries:

Why, in STEP 7 (TIA Portal), is the result of the DInt Addition in SCL not

displayed correctly?
https://support.industry.siemens.com/cs/ww/en/view/98278626

Ch 18 — Planning Tasks

23

2.8.2 Data type Date_Time_Long

Table 2-11: Structure of DTL (Date_Time_Long)

Year Month

Day | Weekday

Hour Minute | Second | Nanosecond

DTL always reads the current system time. Access to the individual values is by the
symbolic names (for example, My Timestamp.Hour)

Advantages

e All subareas (for example, Year, Month, ...) can be addressed symbolically.

Recommendation

Use the new data type DTL instead of LDT and address it symbolically (for
example My Timestamp.Hour).

Note More information can be found in the following entries:

In STEP 7 (TIA Portal), how can you input, read out and edit the date and time
for the CPU modules of S7-300/S7-400/S7-1200/S7-15007?
https://support.industry.siemens.com/cs/ww/en/view/43566349

Which functions are available in STEP 7 V5.5 and in TIA Portal for processing
the data types DT and DTL?

https://support.industry.siemens.com/cs/ww/en/view/63900229

2.8.3 Other time data types
Table 2-12: Time data types (only S7-1500)
Type Size Value range
LT#-106751d23h47m16s854ms775us808ns
LTime 64 Bit to
LT#+106751d23h47m16s854ms775us807ns
LTOD#00:00:00.000000000
LTIME_OF_DAY 64 Bit to
LTOD#23:59:59.999999999

Ch 18 — Planning Tasks

24

28.4 Unicode data types

With the help of the data types WCHAR and WSTRING Unicode characters can be
processed.

Table 2-13: Time data types (only S7-1500)

Type Size Value range

WCHAR 2 Byte -

Preset value:
WSTRING (4 + 2*n) Byte 0 ..254 characters
Max. Value: 0 ..16382

n = length of string

Properties
e Processing of characters in, for example, Latin, Chinese or other languages.
e Line breaks, form feed, tab, spaces
¢ Special characters: Dollar signs, quotes

Example

¢ WCHAR# ‘a‘’
e WSTRING#‘Hellc World!®

Ch 18 — Planning Tasks

2.8.5 Data type VARIANT (S7-1500 and S7-1200 from FW4.1)
A parameter from the type VARIANT is a pointer that can point to tag of different
data types. In contrast to the ANY pointer, VARIANT is a pointer with type test.
This means that the target structure and source structure are checked at runtime
and have to be identical.
VARIANT, for example, is used for communication blocks (TSEND_C) as input.
Figure 2-13: Data type VARIANT as input parameters for instruction TSEND_C
£instTSEND_C
TSEND_C
(][%
ENM ENQ =
slse — REQ DONE —.-..
gstatConnect COMNNECT BUSY — .
#statsendData DATA ERROR —1...
- STATUS
VARIANT
Here the structure is checked to TCON_IP_v4
Advantages
¢ Integrated type test prevents faulty access.
¢ The code can be more easily read through the symbolic addressing of the
variant tags.
e Code is more efficiently and within a shorter time.
¢ Variant pointers are clearly more intuitive than ANY pointers.
¢ The right type of variant tags can be used directly with the help of system
functions.
¢ Flexible and performant transfer of different structured tags is possible.
Properties

In a comparison between ANY and variant, the properties can be seen.
Table 2-14: Comparison ANY and variant

ANY

Variant

Requires 10 byte memory with defined
structure

Does not require a main memory for the
user

Initialization either via assignment of the
data area or by filling the ANY structure

Initialization by assigning the data area or
system instruction

Non-typed — type of an interconnected
structure cannot be recognized

Typed — interconnected type and for arrays
the length can also be determined

Partly typed — for arrays the length can also
be determined

VARIANT can be evaluated and also
created via system instructions

Ch 18 — Planning Tasks

26

Recommendation

Note

* Check where before you had to use the ANY pointer. In many cases a pointer
is no longer necessary (see following table).

* Use the data type VARIANT only for indirect addressing when the data types

are only determined at program runtime.

- Use the data type VARIANT as InOut formal parameter to create generic
blocks that are independent from the data type of the actual parameters

(see example in this chapter).

- Use the VARIANT data type instead of the ANY pointer. Errors are
detected early on due to the integrated type test. Due to the symboalic
addressing, the program code can be easily interpreted.

- Use the variant instruction, for example, for type identification (see
following example and chapter 2.9.2 VARIANT instructions)

» Use the index for arrays instead of addressing the array elements via ANY
(see chapter 3.6.2 ARRAY data type and indirect field accesses).

Table 2-15: Comparison ANY pointer and simplifications

What are ANY pointers used for?

Simplification with S7-1200/1500

performant processing via absolute
addressing

for example, transferring user-
defined structures via ANY pointer to
functions

Programming functions that can process —> | Functions with variant pointer as InOut
different data types parameter for blocks
(see following example)
Processing of arrays —> | Default array functions
« for example, reading, initializing, * Reading and writing with
copying of elements of the same #myArray[#index] (see chapter
type 3.6.2 ARRAY data type and indirect
field accesses)
* Copying with MOVE_BLK (see
chapter 2.9.1 MOVE instructions)
 Transferring structures and - | Transferring structures as InQut

parameters
» see chapter 3.3.2 Call-by-reference

If values of non-structured VARIANT tags are to be copied, you can also use
VariantGet instead of MOVE_BLK_VARIANT (chapter 2.9.2 VARIANT

instructions).

Ch 18 — Planning Tasks

27

Example

With the data type VARIANT it is possible to identify data types in the user program
and to respond to them accordingly. The following code of the FCs "MoveVariant”

shows a possible programming.

e The InOut formal parameter "InVar” (data type VARIANT) is used to show a tag

independent from the data type.

e The data type of the actual parameter is detected with the "Type_Of"

instruction

¢ Depending on the data type, the tag value is copied with the
"MOVE_BLK_VARIANT” instruction to the different output formal parameters.

e If the data type of the actual parameter is not detected, the block will output an

error code.

Figure 2-14: Formal parameter of the FC "MoveVariant”

MoveVariant
Name
1 <€ » Input
2 4 ¥ Output
3 d-» outinteger Int
4 4@n outReal Real
5 4= » outTypeCustom “typeCustom”
6 <@ ¥ InOut [m)
7 @-n» inOutVariant Variant
8 <4 » Temp
S <0 » Constant
10 €1 » Retumn

Data type

#MoveVariant := MOVE_BLK_ VARIANT (SRC :

Default value

i
B
}
(=)
0
s
rt
)
N
}
vl
o

rt

COUNT := 1,

SRC_INDEX := 0,
DEST_INDEX := 0O,
DEST => #outlInteger);

Real: Move Real

#¢MoveVariant := MOVE_BLK~VARIANT (SRC

:= #inOutVariant,

COUNT := 1,
SRC_INDEX := 0

’
DEST INDEX := 0,

DEST => #outReal);

typeCustom: Move outTypeCuston

#MoveVariant :

MOVE_BLK_ VARIANT (SRC

:= #inOutVariant,

COUNT := 1,

SRC_INDEX := 0,

DEST_INDEX := 0,

DEST => #outTypeCustom);

FT.Q Error

BLS

41
5)
o
Vil
~
p
pﬂ

3
rt

Il

X

o

=1
|

Ch 18 — Planning Tasks

28

2.9.3

Note

3.7

RUNTIME

The "RUNTIME" instruction measures the runtime of the entire program, individual
blocks or command sequences. You can call this instruction in LAD, FBD, SCL and
in STL (only S7-1500).

More information can be found in the following entry:

With S7-1200/S7-1500, how do you measure the total cycle time of an
organization block?
https://support.industry.siemens.com/cs/ww/en/view/87

Libraries

With the TIA Portal you can establish independent libraries from different project
elements that can be easily reused.

Advantages

s Simple storage for the data configured in the TIA Portal:
- Complete devices (controller, HMI, drive, etc.)
- Blocks, tag tables, PLC data types, watch tables, etc.
- HMI screens, HMI tags, scripts, etc.

» Cross-project exchange via libraries

s Central update function of library elements

s Versioning of library elements

« Fewer error sources when using control blocks through system-supported
consideration of dependencies

Recommendations

Note

s Create the master copies for easy reusability of blocks, hardware
configurations, HMI screens, etc.

s Create the types for the system-supported reusability of library elements:
- Versioning of blocks
- Central update function of all usage locations

» Use the global library for the exchange with other users or as central storage
for the simultaneous use of several users.

» Configure the storage location of your global library so it can automatically be
opened when starting the TIA Portal.
Further information is available at:
https://support.industry.siemens.com/cs/ww/en/view/100451450

More information can be found in the following entries:

Which elements of STEP 7 (TIA Portal) and WinCC (TIA Portal) can you store in
a library as Type or as Master Copy?
https://support.industry.siemens.com/cs/ww/en/view/109476862

How can you open a global library with write access rights in STEP 7 (TIA
Portal)?
https://support.industry.siemens.com/cs/ww/en/view/37364723

Ch 18 — Planning Tasks

29

3.71

Types of libraries and library elements

Generally there are two different types of libraries:
e "Project library"
e "Global library"

The content consists of two storage types each:
e "Types"

e "Master Copies"

Figure 3-38: Libraries in the TIA Portal

P e R
S S & K e cx i T LNERG ¥ - am

Options
'50 s Library view
1 v | Project library

JEEILT]

w || Proiect library
B Aad ni
- @Fel

V103
2,V100

v & Motor
1jv1.01

V1 0 0
| Master coples
LM Copy of PLC_1

2 |/ Globallibraries |
= T EEE 5 &

» [L] Buttons-and-Switches

» L] Leng Functions

 Ovtem view » L] Monitering-snd-control-objects
L e » L] Dacumentation templates
-

-

» LUl winac e
w |1 User_Lib_Versions
v Types
B Add new type
- o
V104
V100
- -I‘: Motor

(1) "Project library"
- Integrated in the project and managed with the project
- Allows the reusability within the project
(2) "Global library"
- Independent library
- Use within several projects possible
A library includes two different types of storage of library elements:
(3) "Master copies"

- Copies of configuration elements in the library (e.g. blocks, hardware, PLC
tag tables, etc.)

- Copies are not connected with the elements in the project.
- Master copies can also be made up several configuration elements.
(4) "Types"

- Types are connected with your usage locations in the project. When types
are changed, the usage locations in the project can be updated
automatically.

Ch 18 — Planning Tasks 30

3.7 Libraries

- Supported types are control blocks (FCs, FBs), PLC data types, HMI
screens, HMI faceplates, HMI UDT, scripts).

- Subordinate elements are automatically typified.
- Types are versioned: Changes can be made by creating a newer version.
- There can only be one version of a used type within a controller.

3.7.2 Type concept

The type concept allows the creation of standardized automation functions that you
can use in several plants or machines. The type concept supports you with
versioning and updating functions.

You can use types from the library in the user program. This offers the following
advantages:

Advantages

Properties

Central update of all usage locations in the project
Unwanted modifications of usage locations of types are not possible.

The system guarantees that types always remain consistent by hindering
unwanted delete operations.

If a type is deleted, all usage locations in the user program are deleted.

By using types you can make the changes centrally and update them in the
complete project.

Figure 3-39: Typifying with user libraries

Project 2= User library
/ B ~

. i) il LTV 1 \‘
Ue @<=~ Nl Mheitarores without

ue @ typification

s Central update to
newer version
Update
Use V2 . Typ V1 \|
with typification
Use V2 Typ V2

Use V2

Types are always marked for better identification

Ch 18 — Planning Tasks 31

3.7.3

3.74

Differences between the typifiable objects for CPU and HMI

There are system-related differences between the typifiable objects for controllers

and HMI:

Table 3-9: Differences of types for controller and HMI

Controller

HMI

Subordinate control elements are typified.

Subordinate HMI elements are not typified.

Subordinate control elements are
instanced.

Subordinate HMI elements are not
instanced.

Control elements are edited in a test
environment.

HMI images and HMI scripts are edited in a
test environment. Faceplates and HMI -
UDTs are directly edited in the library
without test environment.

Further information on the handling of libraries can be found in the following

example.

Versioning of a block

Example: Creating a type
The following example shows you how the basic functions of the libraries are used

with types.
Table 3-10: Creating a type
Step Instruction
1. Create a new PLC data type with "Add new data type” and create some tags.

« [TransportBelt [CPU 1511...
Y Dpevice configuration
% Online & diagnestics

Later on this is the subordinate type.

» g Program blocks
» [Technology objects typeEngineData
» | g Energy cbjects Name Data type Default value
» :1%_.} External source files L~ power Struct | &
» .ﬂ PLCtags &0 L maxpower Int — 1000
B 1_::_ PLC data types qlf= cosPhi Real 0.89
B Add newdats ype @@~ outputvalues Struct
il tvoeControlBelt alf= voltage Real
) ﬂ typeEngineData I = current Real
b |1 System = frequency Real

Ch 18 — Planning Tasks

32

3.7 Libraries

Step

Instruction

Create a new function block with "Add new Block”. This is the higher-level type.

v [1§ TransportBelt [CPU 1511_..
[IY Device configuration
%/ Online & diagnostics
v |5 Program blocks

& Add new block
& Msin [0B1]

@/

Add new block

Name:

lEngmc

Organization
block

3

Description:
Function blocks are code blocks that store
so that they remain available after the block h

Fm s
=

Define an output tag of the data type you have created. The PLC data type is
therefore subordinate to the function block.

v (1 TransportBelt [CPU 1511...
[IY Device configuration
%/ Online & diagnostics
v |l Program blocks
I Add new block
& Main [OB1]

R = tngine (Fo7] e

- 0 0 NOW;M A WN -

o

Engine

Name Data type
<l » Input
<0 v Outout
<|®* v control “typeEngineData”
< = ¥ power Struct
< . maxpower Int
< = cosPhi Real
g = ¥ outputValues Struct
g . voltage Real
2ol = current Real
< - frequency Real

Drag the function block via drag-and-drop into the "Types” folder in the project

library.

v (1 TransportBelt [CPU 1511 ...
[IY Device configuration
%/ Online & diagnostics
v g Program blocks
B Add new block
4 Main [OB1]

Options

Library view (&) -
v l Project library
0§ E [

ol beainee ik ".y

<

‘ o |iEngine [FB7] :

B ~oa new type
» %] SystemTypes
» (3 Master copies

Ch 18 — Planning Tasks

Example: Changing a type

Table 3-11:

Changing a type

Step

Instruction

Right-click the block in the "Project library” and select "Edit type”

Libraries a)

Options =
Library view (&) = E
v | Project library il
=0T [+] m
w Ll Project library E
=
v [Types 3
ﬁ Add new type E
v 2 Enzine | 2
Open
A
6 /’ Edit type
Duplicate ty)
» [System] Update \ ’
» [Mastercop Assign version
Library management
X cut Ctrl+X
15 Copy Ctrl+C
¥ Delete Del
Rename F2
p— g PTIN... Ctri+P
v | Global librarie| £ print preview...
(I g U} @ g Properties... Alt+Enter

Select which controller is to be used as test environment and confirm the dialog
with "OK”.

Edit type X

0 Select a test environment to edit the type.

After a test instance is selected, 3 new “in test” type version is created in the library. Select the
testinstance you went to use:
Instance Type and version Path

1 3 engine [FB7] Engine V0.0.1 Transpongelt [CPU 1511-1 PV]\Program blocks

Ok]| cancel |

—.

If several controllers in the project use the selected block, a controller has to be
selected as test environment.

Ch 18 — Planning Tasks

3.7 Libraries

Step

Instruction

The block opens. A new version of the block is created.
» [[§ TransportBelt [CPU 15111 ...
[IY Device configuration
% Online & diagnostics
it ':L Program blocks
B Add new block
& Main [OB1]

__________________ L engine [FB7] Engine

Add an input tag.

In this place you have the option to test the change on the block by loading the
project onto a controller. When you have finished testing the block, continue with
the following steps.

This object is connected with 8 type in the libraryand is currently in the *in test” state.
Any change to this test instance is mirrored in the version of the type in the teststate: y
ngine
Name Data type Default value Retain
1] * oo
2 4ne velocity Real 0.0 Naon-retain
r — -

3] i =] -
4 <@ ¥ Output
5 <= » contrl "typeEnaineData”™ Non-retain

Click the "release the version” button.

ﬂ This cbpect s connected with & type in the library and i currently in the *in test® state,

Amychange to this test instence is mimored in the version of the type in the test state: You can release the version ordiscard the changes and del=te the version

@

A dialog box opens. Here you can store a version-related comment. Confirm the
dialog with "OK".

Release type version %

o Define the properties for the released type version.
Anew version will be released for the selected pypes.
Assign them common properties or confirm the recommended properies.
Hame oftype: | Engine
Version: 00).2
Authar: |User

Comment:

~ Dptions

["] Delete unused type versions from the Kibrary

If there are several usage locations of the block in different controllers of the
project, you can update them all at the same time: "Update instances in the
project”.

If older versions of the element are no longer required you can delete them by
clicking "Delete unused type versions from library”

Ch 18 — Planning Tasks

35

3.8 Increased performance for hardware interrupts

The processing of the user program can be influenced by events such as hardware
interrupts. When you need a fast response of the controller to hardware events
(e.g. arising edge of a channel of a digital input module), configure a hardware
interrupt. For each hardware interrupt a separate OB can be programmed. This OB
is called by the operating system of the controller in the event of a hardware
interrupt. The cycle of the controller is therefore interrupted and continued after
processing the hardware interrupt.

Figure 3-40: Hardware interrupt is calling OB

Event

e.qg. falling
e.g. rising edge E6.1
edge E0.0

Hardware Hardware

interrupt interrupt_1
0OB40 OBxxx

In the following figure you can see the configuration of a "hardware interrupt” in the
hardware configuration of a digital input module.

Figure 3-41: Configuring hardware interrupt

0 1 “ 1 4 5 || & 7 KB e
Rail_0 I !EE
[<] n
—

I
Device overview i
J General | 10 tags | Texts
» General Hardware interrupts
 Module parameters
General
» Channel template E Enable rising edge detection:
Inputs
ENEL i Eventname: |Rising edgel
~ DG
General HARIWaRE iNEEIUPE [1)_chanre0_rsing edi=
= Inputs Friority E - 3HiI_cha rising_edge [0B40}
Channel 0 & Hi_channe|_0_falling_edge [O241]I

LAl b b e el ettt ittt

Advantages

* Fast system response to events (rising, falling edge, etc.)
e Each event can start a separate OB.

Ch 18 — Planning Tasks 36

Recommendation

Use the hardware interrupts in order to program fast responses to hardware
events.

If the system response is not fast enough despite programming a hardware
interrupt, you can still accelerate the response. Set as small an "Input delay” as
possible in the module. A response to an event can always only occur if the
input delay has lapsed. The input delay is used for filtering the input signal in
order to, for example, compensate faults such as contact bounce or chatter.

Figure 3-42: Setting input delay

Rail_0

~ D16

DI Configuration

VP Nope, e, P8

Device overview

General | 10 tags I Texts ‘
» General I
¥ Module parameters

General Apply to all channels that use the template

w Channel template

> Inputs Q

inputs Diagnostics
["] e supply veltage L+

General [| wire break
* Inputs

Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channels
Channel &
Channel 7
Channel 8

T

Ch 18 — Planning Tasks

37

3.10

SCL programming language: Tips and Tricks

Using call templates

Many instructions of the programming languages offer a call template with a list of
existing formal parameters.

Table 3-12: Easy expanding of the call template

Step

Instruction

1.

Drag an instruction from the library into the SCL program. The editor shows the
complete call template.

MainBeltControl ¥ | Favorites
Msme Dta type Defaultv...) e e
1@~ Wnput Marme

= . =
¥ |-u] Bit logic operations

3 -
ISR LB » [&] Timer operations

4 4= » behControl

“typeControlBelt”

- Jperations
5 * InDut
3t
& =
7 - Satc —
B = c | B &% cup
B . statContro e
a L ¥ [Legocy
g 4= » nstCounter CTU_INT
E — . ¥ | {] Comparator operations
1]
|‘-- —_— 12 » [£] math functions
* Block title: ¥ [Move operations
i » 55 Conversion operations
¥ 5% Program contral operati
b Network 1: + [68) Word lagic operations
» Metwork 2 ¥ =4 Shift and rotate
F ong Legacy

4 Network 3:

Now fill in the required parameters "CU" and "PV” and finish the entry with the
"Return” button.

The editor automatically reduces the call template.

Network 3:

‘ : T‘Lnsz:su:b:: I:;:.'-_';i_:T.;.:H rValue) ;

If you want to edit the complete call later on again, proceed as follows.

Click into the call at any place and then click "CTRL+SHIFT+SPACE". You are
now in the "Call Template” mode. The editor expands the call again. You can
navigate with the "TAB" button through the parameters.

1 #instCounter(CU:=#statCountlp,

BV:=gstatCounterValue,

[T I PR N1

3.10.1
Example
2.
3.
4.
5.

Note: In the "Call Template” mode the writing is in italics.

Ch 18 — Planning Tasks

38

3.10.2

3.10.3

What instruction parameters are mandatory?

If you are expanding the call template, the color coding will show you straight away
what formal parameters of an instruction are optional and which ones are not.
Mandatory parameters are marked dark.

Drag-and-drop with entire tag names

In the SCL editor you can also use drag-and-drop functions. For tag names you are
additionally supported. If you want to replace one tag by another, proceed as
follows.

Table 3-13: Drag-and-drop with tags in SCL

Step Instruction
1. Drag the tag via drag-and-drop to the tag in the program that is to be replaced.
Hold the tag for more than 1 second before releasing it.
MainBeltContral
Name Dats type
S <@ ¥ InDut
? < .' Seatic
5 g a satCopmyrValue Int
0@ e * insmCounte) CTU_INT
1 -3 L] cu Bool
124 L} co Eccl
12 <@ L] R Beel
€ n -
» Block title:
- MNetwork 1:

. > 1 Sekunde gedriickt halten

The complete tag is replaced.

Ch 18 — Planning Tasks

39

3.10.4 Structuring with the keyword REGION (V14 or higher)

The SCL code can be divided in areas with the keyword REGION. These areas
can be given a name and can be collapsed and expanded.

Advantages

e Better overview
e Easy navigation even in large blocks
* Ready code fragments can be collapsed.

Properties
REGIONSs can be nested.
Recommendation
Use the keyword REGION for the structuring of your SCL blocks.
Example
Figure 3-43: SCL editor
1 o ¢
— r—
EE 2| 8 e o ¢
[* © system time, local time, timezone | ||
¥ ¥ DMS inputvalue check and convertto ... |2 DREGION System time, local time, time zoneli
~ B DDinputvalue check 73 // Reading system and local time ======é§
v B Dayof the year T4 #retval := RD_SYS_T(#tempSysTime); // R
~ @ caleculation :: #actSyastenTime := #tempSyaTime; // Cm:p%
T 778 IF (#retval > 1) THEN END_IF
¥ B Sunset 3 {
B . . o ¥
¥ @ Write output (sunrise, sunset, daytime) 84 $retval := RD_LOC_T(#tempOfficlocTime); §
g5 #actLocallime := #tempOfficLocTime: /. :}
gé 3
87® IF (#retval > 1) THE! END_IF “1‘
a4 // Calculation of time difference i:&r.pi
95 f¢tempTimeZone := I)ILTI_TC_REJ‘,_UTI_EE_TC_EI;
Ié:’ | END ION |/System time, local time, time)

Ch 18 — Planning Tasks

3.10.5 Correct use of FOR, REPEAT and WHILE loops

There are different versions and applications for the use of loops. The following
examples show the differences.

Properties: FOR loop

The FOR loop runs through a defined number of runs. The loop variable is
assigned a start value at the beginning. Afterwards it is incremented up to the end
value in each loop run with the specified step size.

For reasons of performance, the start as well as the end value is calculated once at
the beginning. Consequently, the loop variable can no longer influence the loop
code.

Syntax
FOR statCounter := statStartCount TO statEndCount DO

cacementc sSeCrt1on i

END FOR;
With the EXIT command the loop can be interrupted at any time.

Properties: WHILE loop

The WHILE loop is ended by a termination condition. The termination condition is
checked before the start of the loop code. l.e., the loop is not executed, if the
condition is not instantly fulfilled. Each variable can be adjusted for the next run in
the loop code.

Syntax
WHILE condition DO

caitelentc s2CL10Il

END_WHILE;

Properties: REPEAT loop

The REPEAT loop is ended by a termination condition. The termination condition
is checked at the end of the loop code. This means the loop is run through at

least once. Each variable can be adjusted for the next run in the loop code.
Syntax
REPEAT

LAl

UNTIL condition

END REPEAT;

Recommendation

e Use FOR loops if the loop variable is clearly defined.

e Use the WHILE or REPEAT loop if a loop variable has to be adjusted during
the loop processing.

Ch 18 — Planning Tasks 41

3.10.6 Using CASE instruction efficiently

With the CASE instruction in SCL, it will be exactly jumped to the selected CASE
block condition. After executing the CASE block the instruction is finished. This
allows you, for example, to check frequently required value ranges more
specifically and easily.

Example
CASE #myVar OF
5t
#Engine (#myParam) ;
10,12:
#Transport (¥myParam) ;
15:
#Lift (#myParam) ;
0..20:

#Global (#myParam) ;
// Global is never called for the values 5, 10, 12 or 15!
ELSE
END_CASE;

Note CASE instructions also work with CHAR, STRING data types, as well as with
elements (see example in chapter 2.8.5 Data type VARIANT).

3.10.7 No manipulation of loop counters for FOR loop

FOR loops in SCL are pure counter loops, i.e. the number of iterations is fixed
when the loop is entered. In a FOR loop, the loop counter cannot be changed.

With the EXIT instruction a loop can be interrupted at any time.

Advantages

e The compiler can optimize the program better, since it does not know the
number of iterations.

Example
FOR #statVar := #statLower TO #statUpper DO
#statvar := #statvar + 1; no effect, compiler warning
END FOR;

Ch 18 — Planning Tasks

42

3.10.8

Example

3.10.9

Example

3.10.10

Example

FOR loop backwards

In SCL you can also increment the index of FOR loops backwards or in another
step width. For this, use the optional "BY” key word in the loop head.

FOR #statVar := #statUpper TO #statLower BY -2 DO
END_FOR;

If you are defining "BY" as "-2", as in the example, the counter is lowered by 2 in
every iteration. If you omit "BY”, the default setting for "BY” is 1

Easy creation of instances for calls

If you prefer to work with the keyboard, there is a simple possibility to create
instances for blocks in SCL.

Table 3-14: Easy creation of instances

Step Instruction

1. Give the block a name, followed by a ".” (dot). The automatic compilation now
shows you the following.

"LEF_Frequency”.

01 m > Create multiinstance Mame:='LGF_Fr_. -
sa. o> Open “Call cpticns* diale... Open “Call opti..
36 p == Create parameterinstance Mame:='LGF_Fr...
36 5 == Create single instance Mame:="LGF_Fr..

2. On the top you can see the already existing instances. In addition, you can
directly create a new single instance or multi-instance.

Use the shortcuts "s" or "m" to go directly to the respective entries in the
automatic compilation window.

Handling of time tags

You can calculate the time tags in SCL just as with normal numbers i.e. you do not
need to look for additional functions, such as, e.g. T_COMBINE but you can use
simple arithmetic. This approach is called "overload of operands”. The SCL
compiler automatically uses the suitable functions. You can use a reasonable
arithmetic for the time types and can therefore program more efficiently.

time difference := time stamp 1 - time stamp 2;

The following table summarizes the overloaded operators and the operations
behind it:

Ch 18 — Planning Tasks 43

3.10 SCL programming language: Tips and Tricks

Table 3-15: Overloaded operands for SCL

overloaded operand Operation
Itime + time T_ADD LTime
Itime — time T_SUB LTime
Itime + lint T_ADD LTime
Itime — lint T_SUB LTime
time + time T_ADD Time
time - time T_SUB Time
time + dint T_ADD Time
time - dint T_SUB Time
Idt + Itime T_ADD LDT/ LTime
Idt — Itime T_SUB LDT/LTime
Idt + time T_ADD LDT/ Time
Idt — time T_SUBLDT/ Time
dtl + Itime T_ADD DTL/LTime
dtl - Itime T_SUB DTL/LTime
dtl + time T_ADD DTL/ Time
dtl — time T_SUB DTL/ Time
Itod + Itime T_ADD LTOD / LTime
ltod — Itime T_SUBLTOD /LTime
ltod + lint T_ADD LTOD /LTime
ltod — lint T_SUBLTOD /LTime
Itod + time T_ADDLTOD / Time
Itod — time T_SUBLTOD/ Time
tod + time T_ADD TOD / Time
tod - time T_SUB TOD / Time
tod + dint T_ADD TOD / Time
tod — dint T_SUB TOD / Time
dt + time T_ADD DT/ Time
dt —time T_SUB DT/ Time
Idt — Idt T_DIFF LDT
dtl — dtl T_DIFF DTL
dt — dt T _DIFF DT
date — date T_DIFF DATE
Itod — Itod T_DIFF LTOD
date + Itod T_COMBINE DATE /LTOD
date + tod T_COMBINE DATE / TOD

Ch 18 — Planning Tasks

3.10.11

Example

Unnecessary IF instruction

Programmers often think in IF-THEN-ELSE instructions. This frequently leads to
unnecessary constructs in programs.

IF (statOnl = TRUE AND

statMotor := TRUE;
ELSE

statMotor := FALSE;
END IF

Recommendation

Example

statOn2 = TRUE) THEN

Remember that for Boolean requests a direct assignment is often more effective.
The entire construct can be programmed with one line.

statMotor := statOnl AND statOn2;

Ch 18 — Planning Tasks 45

4 Hardware-independent programming

To make sure that a block can be used on all controllers without any further
adjustments, it is important not use hardware-dependent functions and properties.

4.1 Data types of S7-300/400 and S7-1200/1500

Below is a list of all elementary data types and data groups.

Recommendation

¢ Only use the data types that are supported by the controllers on which the
program is to run.

Table 4-1: Elementary data types correspond to standard EN 61131-3

Description $7-300/400 §7-1200 S§7-1500

Bit data types « BOOL

e BYTE

« WORD yes yes yes

« DWORD

e LWORD no no yes
Character type « CHAR (8 bit) yes yes yes
Numerical data e INT (16 bit)
types « DINT (32 bit) yes yes yes

« REAL (32 bit)

e SINT (8 bit)

e USINT (8 bit)

s UINT (16 bit) no yes yes

« UDINT (32 bit)
 LREAL (64 bit)

« LINT (64 bit)

e ULINT (64 bit) no no yes
Time types « TIME
« DATE yes yes yes
« TIME_OF DAY
s SS5TIME yes no yes
.« LTIME
no no yes

e L_TIME_OF_DAY

Ch 18 — Planning Tasks

4.1 Data types of S7-300/400 and S7-1200/1500

Table 4-2 Data groups that are made up of other data types

Description S7-300/400 | S7-1200 §7-1500

Time types) PDTATE_AN D_TIME) yes no yes

e DTL no yes yes

) I(-Ll:i TDATE_AND_TIME) no no yes
Character type ¢ STRING yes yes yes
Feld e ARRAY yes yes yes
Structure e STRUCT yes yes yes

Table 4-3: Parameter types for formal parameters that are transferred between blocks
Description S7-300/400 | S7-1200 §7-1500

Pointer « POINTER

. ANY yes no yes

e VARIANT no yes yes
Blocks « TIMER

« COUNTER yes yes® yes

« BLOCK FB

« BLOCK FC yes no yes

« BLOCK DB

. BLOCK_SDB yes no no

e VOID yes yes yes
PLC datatypes | e PLC DATATYPE yes yes yes

) For optimized access, only symbolic addressing is possible

2} For S7-1200/1500 the TIMER and COUNTER data type is represented by
IEC_TIMER and IEC_Counter.

Ch 18 — Planning Tasks

47

4.2 No bit memory but global data blocks

Advantages

e Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized only for reasons of compatibility.

Recommendation

¢ Dealing with bit memory (system and clock flags also) is problematic since the
size of the flag area of each controller has is different. Do not use bit memory
for the programming but always global data blocks. This is how the program
can always be used universally.

4.3 Programming of "Cycle bits"

Recommendation

For the programming of clock memory, the hardware configuration always has to
be correct.

Use a programmed block as clock generator. Below, you can find a programming
example for a clock generator in the SCL programming language.
Example

The programmed block has the following functions. A desired frequency is preset.
The "Q” output is a Boolean value that toggles in the desired frequency. The
"countdown” output outputs the remaining time of the current state of "q".

If the desired frequency is smaller or equal 0.0, then the output q = FALSE and
Countdown = 0.0.

moe) L) L)L
—_—

Period duration: 2 seconds

T#0S_703MS

Note The complete programming example can be found in the following entry:

https://support.industry.siemens.com/cs/ww/en/view/109479728

»

Ch 18 — Planning Tasks

Summary

From the beginning of this chapter, the discussion has been one of planning to not fail by running
out of something. In the case of Charlie and the MTA, it was a nickel that was needed. During
the remainder of the chapter, the quantity is time. The plan should include enough time to
guarantee execution of all programs without failing. The conservative planner usually allows
extra time and he is more successful in his implementation of the overall system. Don’t run out
of CPU time!

Problems

1. For each example, list whether the task would be best programmed as a continuous, periodic or event
(interrupt driven) task. L

Fill a tank to its maximum level and then open a drain valve

Read the thickness of a paper roll every 20 ms

A gluing station must adjust the amount of glue it applies to compensate for changes in the speed
of the axis. After the motion planner executes, check the command speed of an axis and vary the
amount of glue, if needed.

Your system must check the position of a field arm each 0.1 s and calculate the average rate of
change in its position. This is used to determine braking pressure

In a production line, if any of the programs detect an unsafe condition the entire line must shut
down. The shutdown procedure is the same regardless of the unsafe condition

2. For the following figure, provide logic for each one-shot. Identify in your program each signal
labeled below. You may use either Siemens or A-B one-shot logic or you may create the logic
entirely without one-shot instructions:

Input

Ohe Shot

One scan delayed
One Shot

Two scan delayed _‘
One Shot

3. Write the program that would accomplish the task described in the chapter that was solved by
using a frequency divider (prove that the update between the card and the CPU was
happening only about every % second).

4. Pick a commercial wheel with toothed gears and a proximity switch wired to a PLC input.
Describe analytically how fast the wheel is allowed to turn in order for the program in your
PLC to be guaranteed to not miss any pulses without using a high-speed pulse counter input.

5. For the process below, the roll conveyor carries boxes from left to right. If a box is too close
to the one before it, the spacing bar comes up (arrow) to hold it back until a constant spacing
Ch 18 — Planning Tasks 49

is achieved. If a box is spaced in excess of the minimum, the box is allowed to pass on with
no blocking. Write a program in ladder logic to control the blocking bar based on the photo-
eye and an input from a pulse tachometer. Assume the pulse tach is a dint word with a
constantly increasing number of pulses each time read.

/
o

00/6/00,0/0/0/60/0/0/6 /0.6 ooéqboo 00000000

6. Use a program previously written and using the table in the ‘Finally’ section of the chapter to
calculate the execution time of the program. Do you think you will ever do this in the real
world? If you do not, think again!

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ch 18 — Planning Tasks 50

https://creativecommons.org/licenses/by/4.0/

