Chapter 14 OOP

Introduction

What is OOP? OORP is short for Object Oriented Programming and implies an object is the focus
of the program. This chapter discusses the use of objects in PLC programming and their use for
making programs that are more readable. Software engineering in general has looked for
programming tools that allow more robust and reliable computer programs.

Earlier programming discussions of “top-down” computer programming and “structured
programming” have evolved into the use of objects that encapsulate an idea and stand alone in
the program as that evolved concept. The overall idea of any programming endeavour has been
to break the problem down into component parts and solve each part as it pertains to the whole
and then combine the parts into a unified overall program. While the idea of a data structure is
important, the focus of a top-down program or structured program would focus on the structure
or flow rather than the task.

oop

The idea of pluggable entities or “lego” modules implies that modules can be created that can be
plugged into one another and perform as a whole. This entails the idea of information that may
be needed only inside the “lego” program and thus hidden from the outside world, in short, the
idea of encapsulation. This leads to the idea of objects and object oriented programming or
OOP. In OOP, the data is protected since it can be manipulated only inside the shell or protected
program called the object. The logic is protected since it is only executed inside the object and
the details of the program are known inside the object as to how the program and data interact.

OOP protects the data. It is easier to write in a general sense since the module can block out
other programming considerations and the data can be stored inside the OOP as opposed to
elsewhere. Data can, obviously, be stored anywhere the programmer wants but the protection of
the OOP gives a security that wasn’t available in earlier programming methods. And the
programmer and the end user can focus on the object. This gives a great advantage to
maintaining the program since the focus is placed where it was originally intended, on the object
itself. And if some part changes, the programmer is reminded of the entity that is being affected
and that changes should be studied as a whole for the object and not for just a part of the object.
In the case of maintainability of control programs for the factory floor, the diagnostic part should
be modified when the control portion is modified. If encapsulated, the programmer is reminded
of both together since both should be encapsulated inside the object.

The programming language C refers to an object as a class. Other languages have similar
names. In Siemens S7-Basic, the object is referred to as a Function (FC) or Function Block
(FB). Allen-Bradley’s RSLogix 5000 also has introduced a function with version 18 called the
AOI or add-on instruction. While it will not be featured in this chapter, its use is similar to the
function or function block described here.

To program an FC or FB, first identify the object or objects involved. Identify the messages or
Ch 14 OOP 1

signals the object needs to respond to and the outputs that result from these messages or signals.
The FC or FB, while considered a class, may also be considered a template for the program.

And the idea of FB’s or FC’s calling other FB’s or FC’s is a powerful concept and creates the
idea of sub classes or sub-sub classes. The FC or FB can also be re-used again and again in the
same or other programs for the same or different clients. This gives the idea of a class or OOP a
huge advantage over conventional programming as we build programs over the years or from job
to job.

Arguments for the benefits of reusability include:

Reliability

Efficiency of programming effort
Saving time in program development
Decreased maintenance effort
Resulting cost savings

Consistency of programs

Some additional terms of OOP include:

Encapsulation — combining of programs and data to manipulate outcome in an object
Inheritance — building a hierarch of objects, each with inheritance of the parent object
Polymorphism — allowing one set of actions to share an object with another set of actions

FCs can be locked by the creator. This helps to preserve and protect the code and can actually
help to simplify the overall program by firmly defining a functionality that is unchanged from
one instance of code to another. STEP7 enables the user to create a storage location for custom
functions called a Library. Several frequently used standardized and system functions are
provided to the user in several libraries included with STEP7. The user can create a custom
library and add items as needed, supporting programming standardization across projects.

The S7 architecture also supports the structuring of user-defined data storage locations, called
data blocks, and reusable data templates called PLC Data Types.

The S7-1200 and 1500 controllers use programming elements that comply with IEC 61131-3
standard. At the core of the programming structure are code and data containers, known
collectively as “Blocks”. The programmable logic controller provides various types of blocks in
which the user program and the related data can be stored. Depending on the requirements of the
process, the program can be structured in different blocks.

Organization blocks: (OB’s) form the interface between the operating system and the user
program. The entire program can be stored in OB1 that is cyclically called by the operating
system (linear program) or the program can be divided and stored in several blocks (structured
program).

Function: (FC’s) contains a partial functionality of the program. It is possible to program
functions so that they can be assigned parameters. As a result, functions are also suited for

Ch 14 OOP 2

programming recurring, complex partial functionalities such as calculations. System functions
(SFC) are parameter-assignable functions integrated in the CPU‘s operating system. Both their
number and their functionality are fixed. More information can be found in the Online Help.

Function Block: (FB’s) offer the same possibilities as functions. In addition, function blocks
have their own memory area in the form of instance data blocks. As a result, function blocks are
suited for programming frequently recurring, complex functionalities such as closed-loop control
tasks. System function blocks (SFB) are parameter-assignable functions integrated in the CPU*s
operating system. Both their number and their functionality are fixed.

Data Blocks: (DB’s) are data areas of the user program in which user data is managed in a
structured manner.

Permissible Operations: You can use the entire operation set in all blocks (FB, FC and OB).
We will now start to explore these basic “program structuring elements” of S7 beginning with
the FC, or Function. A Function is defined by the IEC 61131 standard as a code container that
does not retain internal values from one scan to the next. Functions in the S7 PLC behave in this
fashion, and act as a container for user developed program code. A function may have a set of
local variables defined for use within the function. Typically, when “called” in the main
program, a function will have new “values” (or actual parameters) loaded into the local variable
(called formal parameters) for use during execution of the function. Once the “results” are
calculated and function execution finishes, the resulting “output value(s)” get returned to the
main program.

Before you can create the program for the parameter-assignable FC, you have to define the
formal parameters in the declaration table. It is up to the programmer to select the declaration
type for each formal parameter.

* The ‘IN° declaration type should be assigned only to declaration types that will be read for
instructions in the subroutine.

* Use the ‘OUT* declaration type for parameters that will be written to within the function.

* Use the “IN_OUT” for formal parameters that need to have a reading access and a writing
access, such as a bit passed into the block that is used in the block for an edge operation.

* TEMP variables are intended to be used for holding interim calculation values or other
values that are only required when the block is executing. TEMP variables exist in the local data
stack while the block is executing and are overwritten when the block exits. The TEMP variables
are - even though they are listed under "Interface™ - not components of the block interface, since
they do not become visible when the block is called and that no actual parameters have to be
passed for the declared TEMP variables in the calling block.

The interface of a block forms the IN, OUT, and IN_OUT parameters. The RETURN parameter
is a defined, additional OUT parameter that has a specific name according to IEC 61131-3. This
parameter only exists in FCs in the interface. The declared formal parameters of a block are its
interface to the "outside" meaning they are "visible" or relevant to other blocks that call this
block. If the interface of a block is changed by deleting or adding formal parameters later on,
then the calls have to be updated.

Ch 14 OOP 3

When an FC is added to a project, the FC is accessible via the Project Browser. When the FC is
to be executed must be determined. This is defined by which OB in which the FC is to be called.
For example, if the FC is to be executed every scan, it is placed in OB1. To call an FC in OB1,
drag and drop the FC from the project browser onto a network.

Blocks Types

This is primarily a Siemens concept although Allen-Bradley has also introduced the idea with
their function blocks in later versions of RSLogix 5000.

Global DBs
A data block (DB) is a data area in the user program containing user data. Global data blocks

store data that can be used by all other blocks. The structure of the global data blocks is user
defined.

Several Types of Blocks in STEP 7 Basic

Interaction between the operating system and the various block types is pictured below:

13

Cyclic | OBA1,
T|OB 2ux

Global

The operating aystem calls this program
oycle OB aonce in each oycle and thersby
starls the exaculion of the user program.
Tha miain program code 15 exaculad in this
OB, You can have mane than one. OB 1
will be the first with additional cyclic OBs
startimg at 200 and ahows

Startup _ il Sama as for OB 1 above

OB 100k

) Whien the CPL's aperating mode changes
Oparating from stop to run a "startup™ event accurs
Systam You can have more than one "startup OB.
28 100 will be tha first with additiona
startup OBs slarting al 200 and abowe.

Ch 14 OOP

Tirme

0B 20x [

For Time-dalay interrupls. tha oparating

interrupt” ORs after a user defined delay

fowr of thase OB lypas

serve to star program code execufion in

Operating
System

For Cyelic Interrupts, these interrupt Ohs

Sama as for 28 1 above

systam starls the cormesponding "tme-delay

tima. The delay time starts nunning aftar the
oall of the instruction SRT_DINT. Togethear
with tha "cyclic inlermupls” there is a limit o

prindic time intervals independently of the
cyclic program exaculion. Togather with the

"lime-delay interrupts” thera is a limit fo four

of thess O [ypas,

_ Hardware »IOB 20x

-t o

Instance
DB

FC

Global

These interrupt OBs can be triggered by
high-speed counters and input channels.

- Diagnostic » OB 82

an error, this module triggers a diagnostic

fixed number 82.

- Time Error »| OB 80

The operating system calls the time error
interrupt, OB8O0, if one of the following
events occurs:

cycle time

queue

Ch 14 OOP

4. Interrupt loss due to high interrupt load

Same as for OB above

If a diagnostics-capable module in which the
diagnostic error interrupt is enabled detects

error interrupt. There is only one OB with the

Same as for OB above

1. The cyclic program exceeds the maximum

2. The called OB is currently being executed
3. An overflow has occurred in an interrupt OB

We will begin with a Function and start the project at the end of the chapter. Remember the
directions from Ch. 8 — no instructions other than contacts and coils could be used to add two 16-
bit numbers. The following show an 8-bit version of the same problem:

CARY[CARY[CARY[CARY|CARY|CARY[CARY

IN IN IN IN IN IN IN

Bitz | Bit6 | Bits | Bit4 | Bit3 | Bit2 | Bitl

BYTO|BYTO|BYTO|BYTO|BYTO|BYTO|BYTO|BYTO

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | BitO
I BYT1|BYT1|BYT1|BYT1|BYT1|BYT1|BYT1|BYT1

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | BitO

RSLT|RSLT|RSLT|RSLT|RSLT|RSLT |RSLT|RSLT

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | BitO

CARYIN

BYT_O

BYT 1

RSLT

For the application, we need a FC rather than an FB since there is nothing to remember from
function to function. Something comes in. Something goes out. Nothing is set in the function
we need to remember. Choose Add new block, then Function and we will choose LAD (Ladder)

because of the need for only contacts and coils:

Add new block X
Name:
Block_1
Language: \ LAD Iﬂ
% Number:
Organization O Manual
block @ Automatic

o)

FB Description:

. Function blocks are code blocks that store their values permanentlyin instance data blocks,
Functicn block so that they emain available after the block has been executed.

= 2

Function

Lo

Data block

more...

> | Additional information

[w] Add new and open

Ch 14 OOP

OK

Cancel

Notice at left, we are now in the Function “Block 1” and we have a new network to start.

Project9 » PLC_1[CPU 1215C DUDUDC] » Program blocks » Block_1 [FC1] - EX

Devices =
= H =k =ik §, E= = ()| g @2 e kg [|eg| e A Gm =" H (5
=) u'ﬁuﬁ = = ._E_\EG—M—G-EC ‘CBQ—GQE G | —a g.
=

, i i, q

¥ _] Project9 Ead o
¥ Add new device 7 ikl intial i - a
Eﬂh Devices & networks _ |~ Block titte: |

~ [PLC_1[CPUI215C ... 8l comment &
Y Device configurat... ~

Y/ Online & diagnos... ¥ Network 1: 3

~ |l Program blocks S H
& Add new block ||

4 Main [OB1] :E"(

4 Block_1 [FC1] ! -

» [Technology obje... =

» External source fil.. i
» [@ PLCtags E

» [PLC data types i

» 5 Watch and force t... §'

» [Online hackuns v ES

< i N s

Devices

Click here to view Variables

it
B

*] Project9
I Add new device
g Devices & networks
~ [PLC_1[CPU1215C
[IY Device configurat..
%/ Online & diagnos...
! ':n'. Program blocks
¢ Add new block
& Main [0B1]

» [Technology obje...

» External source fil...
» [PLC tags

» [PLC data types

» 52 watch and force t..

» [&l Online harkine | .
[2]

<] I

- | Details view

Name

Ad..

Project9 » PLC_1[CPU 1215C DUDUDC] » Program blocks » Block_1 [FC1] -0 EX
W F S L, ERED8r8r U B aB "
Block_1
Name Data type Default val Cornment
1 40~ Input
2 L] Add ne E
3 <@ v Output 0
- a <Add ne
5 4 ¥ InOut
6 - Add new>
7 4@ >~ Temp
8 - <Add new>
9 <4 v Constant
10 L} Add news
11 <@ ¥ Return
12 <40 = Block_1 Void
o T _ 0
—HF HiF =0~ {7 —= &
¥ Block title: [A]
Comment —
* Network 1:
¥

These variables are the ones inside the Function and are, in our case, Bool. We give pseudo-
names to these variables and begin to program the program inside the Function:

Input —

InBitWd1
InBitWd2

Output - SumBit

In/Out -

Carry

Ch 14 OOP

As can be seen later, the Input, Output and InOut variables are the ones that are visible inside the
Function when used in OB1.

Block_1
Name Data type Default value Comment

I <@ * Input
2 q@n InBitwd 1 Boaol
3 e InBitWd2 Bool
- - Add ne
5 < ™ Output
6 | m= SumBit Bool
7 - Add ne
8 < ™ InOut
S |<q] = Carry Bool
10 - Add ne
11 4l ~ Temp
12 - Add ne | |§

Using these pseudo-variables, we enter the program inside the Function:

S A =0 —

#InBitwd1 #InBitwd2 #Carry #5umBit
| 1 l l [3
11 /1 /1 LI

#InBitwd1 #InBitwd2 #Carry
l I | 1
/1 11 1/t

#InBitwd1 #InBitwd2 #Carry
]]] |
/] /1 11

#InBitWd1 #InBitwd2 #Carry
] |] 1L] |
1 11 1T

#InBitwd1 #InBitwd2 #Carry #Carry
| | 11 l { 3
1 11 /1 W

#InBitwd1 #InBitWd2 #Carry
| 1 l | |
1 /1 11

#InBitwd1 #InBitwd2 #Carry
|] 1L] |
1/1 1 1 11

#InBitwd1 #InBitwd2 #Carry
] 1] 1L] |
1 11 1 I

Ch 14 OOP 8

After building the logic, right click on Block_1 in the project tree and compile the function:

~ [@ PLC_1[CPU1215C . ~ -
JIY Device configurat.. HF Ak 0= =

%/ Online & diagnos.. ~ Block title: ..

w |- Program blocks
i’t Add new block
& Main [OB1]
4 Block_1 [FC1] :
E-aﬁ. Technology obje...

B

External source fil... . i .
B #InBitwd1 #InBitwd2 #Carry #5umBit
<= tags

b
»
L || 1 1 [
» L) PLC data types L 4 /1 { }
»
b
»
»

(2l Watch and force t... ‘)
= . #InBitwd1 #InBitwd2 #Carry
&g Online backups

]] L]
rjTrace: '/‘ L ‘/:

:;:‘ OPC.UA commet- [v] #InBitWd1 #InBitWd2 #Carry
2] Ll 1 /1 1 |

v | Details view

#InBitWd1 #InBitWd2 #Carry

Now, we are ready to incorporate the FC in the main program OB. We first add the words we
want to add together:

Project9 » PLC_1 [CPU 1215C DUDUDC] » PLC tags

Devices < Tags H E User constants ”@ System constants H
EEIEEEEELIR =
PLC tags
~ [PLC_1[CPU1215C ... Z‘ Name Tag table Data type Address Retain Acces.. Writa.. Visibl. C.. |
[IY pevice configurat.. 1 -a Word1 Default tag table Int W2 E\ @ g
% Online & diagnes... 2 -a Word2 Default tag table Int TaMV4 k__ﬁl @ E\
= ';:. Program blocks o | - Outwd Default tag table Int %MW k__ﬁl E B
"" Add new block il - CarBit Default tag table Bool %M8.0 El E 9
4 Main [OB1] 5 Add new [+ B ™ v]
& Block_1 [FC1]
» r__* Technology obje..
» External source fil...
-~ ',3 PLC tags
afé Show all tags

After the words to be added are defined, we start programming in OB1. First, we add the logic
for bit 0. This is a half-adder and we need only build this logic once. Then we drag the block
Block 1 from the left and add it to the logic. We finish the process by adding the word.bit
addresses for bit 1 to this function. We now are ready to add the bits 2-15 with function block
for each and we are complete. This is left as an exercise.

Ch 14 OOP 9

HF HiF —0— — £
"Word 1" %X0 "Word2" 3X0 "Outwd" 2ex0
11 | P
11 I/: LI |
"Word1" %X0 "Word2" 2:x0
I 1 1
/1 | |
M8 .0
"Word1".%X0 "Word1".2:X0 "CarBit"
] L] L '} 1
1| 11 LI |
WFCl
“Block_1"
EM ENQ ————
"Word 1" 2%6X1 = |nBitWwd1 SumBit =4 Outiid" X1
"Word2" %X1 = |nBitwd2
s 0
“CarBit" =— Carry

A review of the Variables inside the FC and FBs defined by Siemens:

Before you can create the program for the parameter-assignable block, you have to define the
block parameters in the Interface table. The block interface allows local tags to be created and

managed.

The tags are subdivided into two groups shown by the table below:

Block parameters that form the block interface when it is called in the program

read by the block when it is
called, and whose values are
written again by the block
after execution

Type Section | Function Available in
Input parameters Input Parameters whose values are | Functions, function blocks and
read by the block some types of organization
blocks
Output parameters | Output | Parameters whose values are | Functions and function blocks
written by the block
InOut Parameters InOut Parameters whose values are | Functions and function blocks

Local data that are used for storage of intermediate results

Type

‘ Section ‘ Function

‘ Available in

Ch 14 OOP

10

Temporary local Temp Tags that are used to store Functions, function blocks and
data temporary intermediate organization blocks

results. Temporary local data
are retained for only one
cycle

Static local data Static Tags that are used for storage | Function blocks only
of static intermediate results
in the instance data block.
Static data is retained until
overwritten, which may be
after several cycles

A review of when Temporary Tags are active:

Operating

System Fig. 14-1

a3 |7 ejeJoJoXoXoJo
temp
temp FC 30
@— tags —@>H with FC17 Eg ig FC17 Eg ig FC17
@ ttzr;‘: OB1|{0OB1|{OB1|{OB1|(OB1|(OB1|OB1

Creating an FB Block

“FB — Function block Code blocks that store their values permanently in instance data blocks, so
that they remain available even after the block has been executed.

All In-, Out-, InOut- parameters are stored in the instance DB — the
instance DB is the memory of the FB.

Definition Function blocks are code blocks that store their values permanently in
instance data blocks, so that they remain available even after the block has
been executed. They save their input, output and in/out parameters
permanently in the instance data blocks. Consequently, the parameters are
still available after the block execution. Therefore they are also referred to
as blocks "with memory".

Block Interface The block interface for an FB looks similar to that of an FC. There are two
groups of Block interface tags:

Ch 14 OOP 11

Static Local Data

Parameters

1. Block parameters that form the block interface when it is called in the
program.
- Input, Output, and In/Out parameters are a part of this group

2. Local data that are used for storage of intermediate results
- Temporary local data and Static local data are part of this group

An instance DB is used to save static local data. These static local data can
only be used in the FB, in whose block interface table they are declared.
When the block is exited, they are retained.

When the function block is called, the values of the actual parameters are
stored in the instance data block.

If no actual parameter is assigned to an interface parameter in a block call, then the last value

stored in the instance DB for this parameter is used in the program
execution.

You can specify different actual parameters with every FB call. When the function block is

exited, the data in the data block is retained. To keep the data unique for
each instance of a call it is required to assign a different instance DB each
time a call instruction to an FB is written in code.

You can program parameter-assignable blocks for frequently recurring program code. This has

the following advantages:

1. The program only has to be created once, which significantly reduces
programming time.

2. The block is only stored in the user memory once, which significantly
reduces the amount of memory used.

3. The FB can be called as often as you like, each time with a different
address assignment. For this, the interface parameters (input, output, or
infout parameters) are supplied with different actual operands every time
called.

Multi-instance data block

Definition

Multi-instances enable a called function block to store its data in the
instance data block of the calling function block. This allows you to
concentrate the instance data in one instance data block and thus make
better use of the number of instance data blocks available.”

Ch 14 OOP 12

So, where do most programmers write the majority of their code when using Siemens? That is a
good question but one that should consider the use of FB’s as the main area for large control
programs. Why? We have the ability to use static global variables in this area and also the
ability to have all the variable types including arrays present. In the classroom environment, it is
not necessary to consider this because programs here probably are rather small. When they
grow, however, use the FB as a primary area for large programming efforts.

Later, in the Lab Text, we will see what the Festo Programs give in the way of FB’s. They are
very large and complex.

Summary

This chapter introduces the student to the important concept of functions and function blocks
from Siemens. It is not a complete study of this subject. In the appendix below is found a more
thorough discussion as well as a discussion of optimization techniques using functions and
function blocks. Data types are discussed as well here, a subject that has been discussed in
earlier chapters but not to the extent as found in this appendix. The movement toward functions
and function blocks from Siemens shows a steady move to convince the programming engineer
that their organizational advantages are to be considered.

The appendix also explains more thoroughly global versus local data. Also, the subject of
retentive data and how it is saved is shown. An example of newer programming techniques such
as interspersing SCL in a network in a LAD program is shown as well. This provides very
powerful design in program building.

Personally, I have not had many opportunities to use functions and function blocks in real-world
applications. Most programs written by myself have been unique to the point that the
organization of functions and function blocks gave little or no advantage. Even so, they should
be understood because of their organizational advantages and time saved in constructing
programs that may be used more than once.

Ch 14 OOP 13

Lab 14.1

Revisit the Binary Addition/Binary Subtraction lab from chapter 8 to subtract one 16 bit word
from another and put the 16 bit result in a third word using a function and using the Siemens TIA
software.

Remember:

0+0=0

0+1=1

1+0=1
1+1=0carryl
1+0+carry=0carry 1l
l+1+carry=1carryl

These are the rules for binary addition.

To see binary addition at work:

Carry 1111

Number 1 01001101100
+ Number 2 01011011010
Results 10101000110

Binary addition may take place in ladder logic. Instructions are provided to carry out this
function (ADD), but it is worthwhile to examine the process of binary addition using ladder logic

Since Bit 0 does not have a carry_in, half-adder logic may be employed but only for this bit. It
can be seen that half-adder logic is simpler than full-add logic by comparing Fig. 8-35 (Half-
Adder) to Fig. 8-36 (Full Adder).

CARYJCARYJCARY[CARY|CARY[CARY[CARY
IN IN IN IN IN IN IN CARYIN
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl
BYTO|BYTO|BYTO|BYTO|BYTO|BYTO|BYTO|BYTO BYT O
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | BitO -
| BYT1|BYT1|BYT1|BYT1|BYT1|BYT1|BYT1|BYT1 BYT 1
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0 -
RSLT|RSLT|RSLT|RSLT |RSLT |RSLT |RSLT | RSLT RSLT
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | BitO

Ch 14 OOP 14

Accessing Bits in Words (Siemens)

Examples
In the PLC tag table, "DW" iz a declared tag of type DWCRD. The examples show hit, byte,
and ward slice access:
LAD FBD SCL
Bit ecceasz - & IF "DW".x11 THEH
l_ "D 21T — e
— o EHD IF;
Byte ascess D" b2 - IF "DW".h2 = "DH".h3
| o | Byee THEH
_ Bye "W b2 — I e
D" b3 T i EHWD IF;
Ward access 0B out:= "DW".w0 AND
word "DV .wl;
ERl ER =
"D e — 1M our SO w0
"D T — INZ s . |

Accessing a tag with an AT overlay

The AT tag overlay allows you to access an already-declared tag of a standard access block with
an overlaid declaration of a different data type. You can, for example, address the individual bits

of a tag of a Byte, Word, or DWord data type with an Array of Bool. To overlay a parameter,
declare an additional parameter directly after the parameter that is to be overlaid and select the
data type "AT". The editor creates the overlay, and you can then choose the data type, struct, or

array that you wish to use for the overlay.

Example
This example shows the input parameters of a standard-access FBE. The byie tag B1 is
overlaid with an array of Booleans:
n E1 Exte
- AT AT'E1" Array[0.7] of Eool
- AT[O] Eool
L} AT[1] Eool
= AT[2] Eool
[AT[3] Eonl
B AT[4] Eool
= AT[S] Eacol
L] AT[A] Eoal
= AT[7] Eonl
Tahle 4-5 Oweday of a byte with a Boolean amay
7 B 5 4 3 2 1 0
ATO] AT[] AT[Z] AT[] ATI4] ATIE] AT[E] AT[T]

Another example is a DWord tag overlaid with a Struct:

= = om g

Din'1

Dirl _Struct
51
52
53

Dord

AT DV Sthuct
Word
Eyte
byte

Ch 14 OOP

15

The overlay types can be addressed directly in the program logic:

| LAD FBD SCL
£AT1] & IF WAT[1] THENW

e B oAt) —

END_IF ;

SO0 Stnact 51 IF (#DW1l Struct.51 =

| = | word WH16H000C) THEN

Word HDW_ Stuer 51 — I -

e W CNIDDC — INZ ! END IF;

outl := WDW1l Struct. 52;
MOVE ATIVE _
EM ENG =
HOWA _Struce 52 — 1N ¥ LT - FN 3 QUTI
#OW_Stuct 52— 1N ENG -

Rules
e Overlaying of tags is only possible in FB and FC blocks with standard access.

You can overlay parameters for all block types and all declaration sections.

An overlaid parameter can be used like any other block parameter.

You cannot overlay parameters of type VARIANT

The size of the overlaying parameter must be less than or equal to the size of the overlaid

parameter.

e The overlaying variable must be declared immediately after the variable that it overlays
and identified with the keyword “AT”.

Complete the lab using a function instead of coding each network as separate logic.
Binary Subtraction:

To perform binary subtraction, the easiest method is to find the 2’s complement of the second
number and then add the two numbers together.

The best method of finding the 2’s complement requires the use of a memory bit. The rule
requires that bits from the original number be copied to the 2’s complement number starting at
the right-most bit. The rule applies until a “1” is encountered. The first “1” is copied but a
memory bit is set after which the bits are “flipped”. Try this rule. It works and may be
employed using ladder logic and a Latch bit to quickly find the 2’s complement of a number.
The logic for finding the 2’s complement of a number in ladder logic is begun in Fig. 8-37.
Again, logic must be added to complete the function using rungs similar to rungs 4 and 5 of this
figure but using bits 2 through15.

Again, code the logic using a function.

Ch 14 OOP 16

Lab 14.2

Implement the following:

Linking PLC UDT Tags to HMI Faceplates and Pop-ups

https://www.dmcinfo.com/latest-thinking/blog/id/9136/linking-plc-udt-tags-to-hmi-faceplates-
and-pop-ups-in-tia-portal-v13-spl

Lab 14.3 Repeat Lab 13.2C1 using an FB and UDT — Whack-a-Mole

Lab 13.2C Add a table of results including whether the player hit the light while the light was
on and how long the response was delayed from when the light first turned on.
Results for each hit are to be saved sequentially in the table.

Lab 13.2C1 Implement 13.2C above with a UDT output table. Save sequential hit data for
later display or analysis.

Ch 14 OOP 17

Problems

1. Three types of parameters for interface of a function are:
a
b
C

2. Local data is of two types. They are:

a
b

3. Data blocks are either Single or multi . What is the deciding factor which to use?
4. List some program blocks that are standard.

5. Describe a function or function block that would have the title “Engine” and have two types
of engines that could be called — Diesel or Gasoline.

6. What is the A-B process for adding a function?

For the next three programs, only use skeletal statements but enough to get the idea:
7. In the Kitchen:

In the kitchen are several needs for automation including cooking breakfast. In the breakfast
shelf are several kinds of cereal including oatmeal, cream-of-wheat and grits. Each requires
the microwave and a cooking time. Each requires an amount to be weighed on a scale.
When the weight is achieved, the bowl is placed in the microwave for a time period. Write a
program using FC’s or FB’s to achieve cooking of the breakfast cereal.

8. Three numbers are to be added and the result displayed. Use a FC or FB to accomplish this.

9. In OB, there is a FC1 accessed that subtracts 1 from a number. Build the function block
SUBL1 to complete the operation. Show all tables and logic:

FC1
”SU Bl"

“S3” —In_Num

Out_Nump— “X3”

Ch 14 OOP 18

10. In OB1, there is a FC1 accessed that does the following:

FC1
lll NV”

“S3” —In_Num

“B0"—{In_Bit

Out_Num|— «y3»

In_Num N\, Copy In_Num into Out_Num
except for the bit 0 which is
Lllllllllllllll DBO the exclusive OR of Bit 0 and
e the variable ‘BO’.
Out_Num

Build the function block “INV” to complete the operation. Show all tables and logic:

11. In Siemens’ OB1, there is a FC1 accessed that does the following:

FC1
III NVII

“S3” —In_Num

“S3By”—In_Byt

Out_Num|— «y3»

In_Byt

| Copy In_Num into Out_Num
except for the bits 0 to 7 which
In_Num are ‘anded’ with In_Byt

Out_Num

Build the function “INV” to complete the operation. Show all tables and logic inside the
Function (FC):

Ch 14 OOP

19

12. In Siemens’ OB, there is a FC1 accessed that does the following:

FC1
IIMIXH

“S1” —In_Num_1
“S2” —In_Num_2

“g53” — Bit_Num
Out_Num

I ”X3"

In_Num_1

nNum 2 [|||]]]]]

Bit_Num determines how
many bits are moved from
In_Num_1. Remaining bits are
moved from In_Num_2.

For example, if Bit_ Num=7, the
number of bits moved from

Out_Num | | | | | | | | | | | | | | | | | In_Num_1is 7 as shown at left.

Build the function “MIX” to complete the operation. Show all tables and logic inside the Function (FC1):

Ch 14 OOP

20

Appendix 1

http://www.youtube.com/watch?v=aUILkF4al30&feature=relmfu

Siemens SIMATIC S7-1200 Part 2 - Re-Usable Libraries

See how easy it is to implement reusable Libraries in Step 7 Basic Software eliminating time consuming
coding of repeat functions. This is part two of a four part series showcasing the time and cost saving
benefits of the new S7-1200 and its Step 7 Basic development software. For more information see:
http://www.usa.siemens.com/s7-1200

http://www.youtube.com/watch?v=L2NLcAQhiSg&feature=relmfu

Siemens SIMATIC S7-1200 Part 4 - Project-wide Cross Referencing Made Easy

See how easy it is to troubleshoot the complete Controller and HMI software project together for both
SIMATIC Basic HMI panels and S7-1200 Controllers. This is part four of a four part series showcasing the
time and cost saving benefits of the new $7-1200 and its Step 7 Basic development software. For more
information see: http://www.usa.siemens.com/s7-1200

Ch 14 OOP 21

http://www.youtube.com/watch?v=aUILkF4aI30&feature=relmfu
http://www.usa.siemens.com/s7-1200
http://www.youtube.com/watch?v=L2NLcAQhiSg&feature=relmfu
http://www.usa.siemens.com/s7-1200

Appendix 2

The following pages are from the Siemens Text:
Programming Guideline for $7-1200/1500 Entry ID: 81318674, V1.6, 12/2018

They summarize changes and upgrades to the Siemens Portal Language from Version 14 — TIA
and later. Covered below is a review of the discussions above concerning FB’s and FC’s as well
as general organization using them. Advantages of this type of programming are discussed as
well. Speed of execution is an important part of this discussion.

13

Ch 14 OOP 22

3.24 Instances

The call of a function block is called instance. The data with which the instance is
working is saved in an instance DB.

Instance DBs are always created according to the specifications in the FB interface
and can therefore not be changed in the instance DB.

Figure 3-8: Structure of the interfaces of an FB

Name Data tvpe
4™ Input | =]
20 B execute Bool
27 B mode Bool
L= initialValue Variant
| L resetBuffer Bool
gj > Output
ool L done Bool
2ol B error Bool
20 B statuslD Uint
gym status Word
4™ InOut
1| L item Variant
4= buffer Variant
g~ Static
<y statEdgeupm Bool
e statFirstitemindex Int
<p= statNextEmptyitemin... Int
4 ¥ Temp
4 = tempEdgeup Bool
4] = templnternalError Int
4] = tempNewFirstiterninde) Int

The instance DB consists of a permanent memory with the interfaces input, output,
InOut and static. Temporary tags are stored in a volatile memory (L stack). The L
stack is always only valid for the current processing. |.e. temporary tags have to be
initialized in each cycle.

Properties
¢ Instance DBs are always assigned to a FB.

¢ Instance DBs do not have to be created manually in the TIA Portal and are
created automatically when calling an FB.

¢ The structure of the instance DB is specified in the appropriate FB and can
only be changed there.

Recommendation

e Program it in a way so that the data of the instance DB can only be changed by
the appropriate FB. This is how you can guarantee that the block can be used
universally in all kinds of projects.

For more information, please refer to chapter 3.4.1 Block interfaces as data
exchange.

Ch 14 OOP

23

3.2.5

Advantages

Properties

Multi-instances

With multi-instances called function blocks can store their data in the instance data
block of the called function block. This means, if another function block is called in
a function block, it saves its data in the instance DB of the higher-level FBs. The
functionality of the called block is thus maintained even when the calling block is
transferred.

The following figure shows an FB that uses another FB ("IEC Timer”). All data is
saved in a multi instance DB. It is thus possible to create a block with an
independent time behavior, for example, a clock generator.

Figure 3-9: Multi-instances

Name

4 ~ Input

4 = frequency

4= pulseFauseRatio

<40 ¥ Output

4= clock

- countdown

< ¢ InOut

41 v Static

& ¥ instToffimePulse
s FT

ET

IN

Q

Data type

Multi-instance DB

Real
Real

Bool
Time

TOF_TIME
Time
Time

FB-Statics
TOF_TIME

Bool

AAAAA

Bool

Reusability

Multiple calls are possible

Clearer program with fewer instance DBs
Simple copying of programs

Good options for structuring during programming

e Multi-instances are memory areas within instance DBs.

Recommendation

Example

Use multi-instances in order to ...

¢ reduce the number of instance DBs.

* create reusable and clear user programs.

« program local functions, for example, timer, counter, edge evaluation.

If you require the time and counter function, use the "IEC Timer” blocks and the
"IEC Counter” blocks instead of the absolutely addressed SIMATIC Timer. If
possible, also always use multi-instances here. Thus, the number of blocks in the
user program is kept low.

Ch 14 OOP 24

3.2.6 Transferring instance as parameters (V14)

Instances of called blocks can be defined as InOut parameters.

Advantages

e ltis possible to create standardized functions whose dynamic instances are

transferred.

e Only when calling the block it is specified what instance is used.

Example

Figure 3-11: Transferring instance as parameter

Call options %

Parameter instance
E Name in the interface |in5tIECCcunter1 g'
- B If you call the function block as a parameter instance, the
_Single function block saves its data in the instance you specifyas
ol block parameter and not in the instance ofthe called block This

gives you the option of defining the instance for this FB call
during runtime.

Multi
instance
-ba-b
B
Parameter
instance
more...
| 0K | cancel
e —
FunctionBlock
Name Data type
1 <@ » Input
2 AT b Dhirnirt
3 <& ¥ InQut
4 |amf= » instEccounter CTU_INT =]
5
6 <44 T Static
7 statCount Bool
8 statValue Int
g <Add news
10 Temp
CASE.. FOR... . .
OF.. TODO.. po.. ¢~ REGION
#inatIECCounter (CU:=¢staclount,
PV:=4atatValue);
FunctionBlock™
N B
false — inputl
*Global®.
counterParam instIECCounter || «
Ch 14 OOP

25

3.2.7 Global data blocks (DB)

Figure 3-12: "Add new block” dialog (DB)

Function black Dezeription:

Dats blacks (DBx) #re dats aress inthe user program which contsin user dats.
Select ane of the following npes:

-4 global dats block

* -#n instance dats block

i
§

Data bicck
.

CYTp— ——

Variable data is located in data blocks that are available to the entire user program.
Figure 3-13: Global DB as central data memory

o N el
FB

Advantages
* Well-structured memory area
» High access speed

Properties
* All blocks in the user program can access global DBs.
e The structure of the global DBs can be arbitrarily made up of all data types.

¢ Global DBs are either created via the program editor or according to a
previously created "user-defined PLC data type" (see chapter 3.6.4 STRUCT
data type and PLC data types).

e A maximum of 256 structured tags (ARRAY, STRUCT) can be defined. This
does not apply to tags that are derived from a PLC-data type.

Recommendation
e Use the global DBs when data is used in different program parts or blocks.

Ch 14 OOP

26

Note More information can be found in the following entry:

How is the declaration table for global data blocks structured in STEP 7 (TIA
Portal)?
https://support.industry.siemens.com/cs/ww/en/view/68015630

3.2.8 Downloading without reinitialisation

In order to change user programs that already run in a controller, S7-1200
(firmware V4.0) and S7-1500 controllers offer the option to expand the interfaces of
optimized function or data blocks during operation. You can load the changed
blocks without setting the controller to STOP and without influencing the actual
values of already loaded tags.

Figure 3-14: Load without reinitialization

Block
in project

Name

variable1

variable1

variable2 451 variable2

variable3

variable4

variable3

variabled

l variable5 0 '

Execute the following steps whilst the controller is in RUN mode.
1. Enable "Downloading without reinitialisation”

2. Insert newly defined tags in existing block

3. Load block into controller

=]

variable5

Advantages

* Reloading of newly defined tags without interrupting the running process. The
controller stays in "RUN" mode.

Properties
» Downloading without reinitiatialization is only possible for optimized blocks.

* The newly defined tags are initialized. The existing tags keep their current
value.

* Ablock with reserve requires more memory space in the controller.

 The memory reserve depends on the work memory of the controller; however,
it is max. 2 MB.

* |tis assumed that a memory reserve has been defined for block.
* By default, the memory reserve is set to 100 byte.

* The memory reserve is defined individually for every block.

e The blocks can be variably expanded.

Ch 14 OOP

Recommendation

¢ Define a memory reserve for blocks that are to be expanded during
commissioning (e.g. test blocks). The commissioning process is not disturbed
by a download since the actual values of the existing tags remain.

Example: Stetting memory reserve on the block

The following table describes how you can set the memory reserve for the

downloading without reinitializing.

Table 3-3: Setting memory reserve

Step

Instruction

Right-click any optimized block in the project tree and select "Properties”.

~ [Program blocks
I Add new block
4 Main [OB1]
w [tz] BasicPLCSettings
= LGF_FIFO [FB10017]
& LGF_Frequency [FB10024]
4 LGF_PulseRelay [FE10027]

@ InstLGF_Ti meE
[£z] Communication
|£z] PrintSenial

v v v

[£z] Transport

b g System blocks
(3 Technology objects
l—ﬂ Energy objects
External source files
_a PLCtags
[l PLC data types
[Z watch and force table
'&J Online backups
__-r.‘ Traces

v w W W W W W OF' W

(§i; Device proxy data
Ha Program info

= PLC supervisions & al
1]

atails view

fonspeedl
Temperaturel

Light

fanSpeed2

|
@ InstLGF_Fuls Open
@ instLGF_Set @/’ t

==| Capy Ctri+C
"E Paste -
Copyas text
X Delete Del
Rename F2
Compile »
Download to device 3
& Goonline curl+k
j“‘._.__- ne Ctrl+1
"4’?_ shotorfthe actual values
B | oad snapshots as actual values
N 1
Copy snapshots to start values 3
i Searchin preject Cerl+F

=» Generate source from blocks

M Cross-references F11
2K Crossreference information Shift+F11
H Call structure

Assignment list

Switch pregramming language 3

Know-how protection

o= Frint... Ctrl+P
fﬁ Print preview...

Temperature2

o F'mperties..l] Alt+Enter

Ch 14 OOP

28

Step Instruction

2 Huilding [DE6] IS

) General

General

Download without reinitialization

Informaton
Time smmps

Compilatian Memory reserve: | 100 Bytes | (100 bytes svailable)
Frotection | — En# zad without reinitialization for
Atributes et
Download without reinicalizaton | y

» 4 Retentive memony resene | 0 e __: | (Obytes svailsble)

1]

oK Cancel
=

)|
Click "Download without reinitialization”.
3. Enter the desired memory reserve for "Memory reserve”.
4. Confirm with "OK".

Note You can also set a default value for the size of the memory reserve for new
blocks in the TIA portal.

In the menu bar, navigate to "Options — Settings" and then to "PLC programming
— General — Download without reinitialization".

Example: Downloading without reinitialisation

The following example displays how to download without reinitialization.
Table 3-4 Load without reinitialization

Step Instruction
1. Prerequisite: a memory reserve has to be set (see above)
2. Open, e.g. an optimized global DB.
3. Click the "Activate memory reserve” button and confirm the dialog with "OK”.

= _” o, Q = < Keep actual values o Snapshot ”f

Building @
Name Data type Star \J Retain

@~ Static [=]|
2 am fanSpeed? Real 0.0 |
3 @an temperature 1 Real v
4 4= light1 Bool false m
5 @@= fanSpeed2 Real 0.0 =]
6 4= temperature2 Real 0.0 v
7 @n= light2 Bool false 2

Ch 14 OOP

29

Step Instruction

4. Add a new tag (retentive tags are also possible).

= ¢ B, B = °7 keepactualvalues [gg Snapshot %%
Building
Name Datatype Startwvalue Retain

1 < ¥ Static
2 4ln. fanspeedt Rezl 0.0 M
3 <= temperature 1 Real 0.0 =]
4 41w light1 Bool false M
5 . fanspeed2 Real 0.0 M
6 4= temperature2 Real 0.0)
7 4@-w= light2 Bool als =]
§ <4@e= fanSpeeds Real 0.0 =]
9 4ql= temperature3 Real 0.0 EI
10 q@» light3 Bool)
1141 = testvValue Boal false (.
12| €0 = testvalueRetain Bool]

5. Download the block to the controller.

6. Result:
e Actual values of the block remain

Note Further information can be found in the online help of the TIA Portal under

"Loading block extensions without reinitialization”.
For further information, refer to the following entry:

How is the declaration table for global data blocks structured in STEP 7-1500
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/68015630

Ch 14 OOP

3.29 Reusability of blocks

The block concept offers you a number of options to program in a structured and
effective way.

Advantages

Blocks can be used universally in any location of the user program.
Blocks can be used universally in different projects.

When every block receives an independent task, a clear and well-structured
user program is automatically created.

There are clearly fewer sources of errors.
Simple error diagnostic possible.

Recommendation

If you want to reuse the block, please note the following recommendations:

Always look at blocks as encapsulated functions. |.e. each block represents a
completed partial task within the entire user program.

Use several cyclic Main OBs to group the plant parts.

Always execute a data exchange between the blocks via its interfaces and not
via its instances (chapter 3.4.1 Block interfaces as data exchange).

Do not use project-specific data and avoid the following block contents:
- Access to global DBs and use of single-instance DBs

- Access to tags

- Access to global constants

Reusable blocks have the same requirements as know-how-protected blocks
in libraries. This is why you have to check the blocks for reusability based on
the "Multiple instance capability” block property. Compile the block before the
check.

Figure 3-15: Block attributes
Attributes

D IEC check

[:] Handle errors within block
[} setEno autornatically
@ Optimized block access

I /| Multiple instance ca pability I

Ch 14 OOP 31

3.2.10 Auto numbering of blocks

For internal processing, required block numbers are automatically assigned by the
system (setting in the block properties).

Figure 3-16: Auto numbering of blocks

v V31
B Add new device
#h Devices & networks
~ | FWIS [CPU 15163
Y Device configuration
L. Onkne & diagnosues
w g Program blocks
I Add new block

v/ 3wz
W Add new device
oh Devices & networks
~ @ FvA 5 [CPU 1516-3 PNJDF]

& Main [0B1] Y Device configuration
& FFOQueue [Fe4] Q Online & diagnostics
~ '3 Program blacks
B Add new block
& hein [OB1]
& FIFOQueue [FB4]
E - JFIFOQueue 1 [FB4]|
Copy and paste i
confict with same block number

|

|l Devices
P0Q

v Jviaa
I Add new device
g Devices & networks
~ 3 FW15 [CPU 1516-3 PN/OP]
Y Device configuration
% Online & disgnostics
w [Program blocks
¥ Add new block
& Vein (081]
& FIFOQueuve [FB4)

E 2FIFOQueve_1 {FB1Y

/

° System solves the conflict with
compiling the project. Block gets next
free number autmatically.

:

Advantages

e Conflicting block numbers, e.g. as a result of copying, automatically deletes the
TIA Portal during compilation.

Recommendation

e Leave the existing setting "Automatic" unchanged.

Figure 3-17: Setting in the block

LGF_Frequency [FBTO024T[LGF_Frequency V1.1.2] X
General “ FB supervision definitions l
Genersl |l .
Information
Time stamps
Compilation Name: 1g§3FTf(egugr}cy
Protection Type: [FB
Attributes —
D d without re : Langueg l;il, —
£ Number: | 1004 —3]
| () Menual
(@ Automatic
el w1 [>]
fok [cancel |

32

3.3 Block interface types

FBs and FCs have three different interface types: In, InOut and Out. Via these
interface types the blocks are provided with parameters. The parameters are
processed and output again in the block. InOut parameters serve for the transfer of
data to the called block as well as the return of results. There are two different
options for the parameter transfer of data.

3.31 Call-by-value

When calling the block, the value of the actual parameter is copied onto the formal
parameter of the block. For this, an additional memory in the called block is
provided.

Figure 3-18: Transfer of the value

»mylnt® |
value: 31

N~

o Each block displays the same behavior as the transferred parameters

Properties

¢ \Values are copied when calling the block

3.3.2 Call-by-reference

When calling the block, a reference is transferred to the address of the actual
parameter. For this, no additional memory is required.

Figure 3-19: Referencing the actual parameter (pointer to data storage of the parameter)

,myString“
velue: 'test'

Properties
e Each block displays the same behavior as the referenced parameters.

« Actual parameters are referenced when the block is called, i.e. with the access,
the values of the actual parameter are directly read or written.

Recommendation

e Generally use the InOut interface type for structured tags (e.g. of the ARRAY,
STRUCT, STRING, type...) in order to avoid enlarging the required data
memory unnecessarily.

Ch 14 OOP 33

3.3.3 Overview for transfer of parameters
The following table gives a summarized overview of how S7-1200/1500 block
parameters with elementary or structured data types are transferred.
Table 3-5: Overview for transfer of parameters
Block type / formal parameter Elementary data Structured data
type type
FC Input Copy Reference
Output Copy Reference
InOut Copy Reference
FB Input Copy Copy
Output Copy Copy
InOut Copy Reference
Note When optimized data with the property "non-optimized access" is transferred
when calling the block, it is generally transferred as copy. When the block
contains many structured parameters this can quickly lead to the temporary
storage area (local data stack) of the block to overflow.
This can be avoided by setting the same access type for both blocks (chapter
2.6.5 Parameter transfer between blocks with optimized and non-optimized
access).
3.4 Memory concept
For STEP 7 there is generally the difference between the global and local memory
area. The global memory area is available for each block in the user program. The
local memory area is only available within the respective block.
3.4.1 Block interfaces as data exchange
If you are encapsulating the functions and program the data exchange between the
blocks only via the interfaces, you will clearly have advantages.
Advantages

e Program can be made up modularly from ready blocks with partial tasks.
e Program is easy to expand and maintain.

e Program code is easier to read and test since there are no hidden cross
accesses.

Recommendation

o If possible, only use local tags. Thus, you can use the blocks universally and in
a modular fashion.

Ch 14 OOP

34

3.4 Memory concept

3.4.2

e Use the data exchange via the block interfaces (In, Out, InOut), his guarantees
the reusability of the blocks.

¢ Only use the instance data blocks as local memory for the respective function
block. Other blocks should not be written into instance data blocks.

Figure 3-20: Avoiding access to instance data blocks

FB

o
o

FB

Local

If only the block interfaces are used for the data exchange it can be ensured that
all blocks can be used independent from each other.

Figure 3-21: Block interfaces for data exchange

%
\\f FB

/ Local
FB

Local

Global memory

Memories are called global when they can be accessed from any location of the
user program. There are hardware-dependent memories (for example, bit memory,
times, counters, etc.) and global DBs. For hardware-dependent memory areas
there is the danger that the program may not be portable to any controller because
the areas there may already be used. This is why you should use global DBs
instead of hardware-dependent memory areas.

Advantages

e User programs can be used universally and independent from the hardware.

e The user program can be modularly configured without having to divide bit
memory areas for different users.

¢ Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized for reasons of compatibility.

Ch 14 OOP

35

3.4 Memory concept

Recommendation
e Do not use any bit memory and use global DBs instead.

e Avoid hardware-dependent memory, such as, for example, clock memory or
counter. Use the IEC counter and timer in connection with multi-instances
instead (chapter 3.2.5 Multi-instances). The IEC timers can be found in
"Instructions — Basic Instructions — Timer operations”.

Figure 3-22: IEC timers

v @] Timer operations

E g Generate pulse
3 TON Generate on-delay
4 TOF Generate offdelay
2 TONR Time accumulator
& -[w)- Start pulse timer
B -{ToN)- Start on-delay timer
1 ~[ToF)- Start offdelay imer
£l -{TONR]- Time accumulator
1 -1}~ Resettimer
Eﬁ —PT}- Load time duration
3.43 Local memory

e Static tags
e Temporary tags

Recommendation
e Use the static tags if the values are required in the next cycle.

e Use the temporary tags as intermediate memory in the current cycle. The
access time for temporary tags is shorter than for static ones.

o If an Input/Output tags is accessed very frequently, use a temporary tag as
intermediate memory to save runtime.

Note Optimized blocks: Temporary tags are initialized in each block call with the
default value (S7-1500 / S7-1200 firmware V4 or higher).

Non-optimized blocks: Temporary tags are undefined for each call of the block.

Ch 14 OOP

36

3.4.4 Access speed of memory areas

STEP 7 offers different options of memory access. For system-related reasons
there are faster and slower accesses to different memory areas.

Figure 3-23: Different memory access

Access speed

O intermediate

. fast . slow

Non-structured MName Data type Default value Retain
elementary data type FC .‘EI Input
b Output A
rameter Retain tags
pa 3 4 ¢ InOut & .
4 40 v Static
Non-retain tags statNonRetain Tags [PLC data type] Mon-retain
.ﬂ - statRetain Retain
it L statSetinDB Int Setin IDB
Temporary tags ‘ 4l &) statAmay . Array[0.9] of Int Non-retain
¥ Temp |i i
= tempVariable Wiord
< I
[Ll
¥ Block title:
- ¥ Network1:
Indexed accesses with
runtime tindex 1 @ L #stathArray["indexedhccess™)
3 o OFN DB [é#tempVariable]
Accesses to checks for at 4
runtime require 5 o L OW ["indirectRAccess™]
(register, indirect and - o
indirect DB accesses) TR
Optimized Standard
Name pDatatype/ COPYing between optimized Mame Data type Offset
&gl v Static i)\ and non-optimized blocks /i« searic [
4= 4] = standardVariable Int 0.0

optimizedVaraible Int

Access to non-optimized
blocks

Access to optimized DBs

Fastest access in the $7-1200/1500 in descending order

Optimized blocks: Temporary tags, parameters of an FC and FB, non-retentive

Optimized blocks whose access for compiling is known:

Indexed accesses with index that was calculated at runtime (e.g. Motor [i])

Accesses that require checks at runtime
- Accesses to DBs that are created at runtime or which were opened

- Register access or indirect memory access

1.

static tags, tags [PLC data type]
2.

- Retentive FB tags

- Optimized global DBs
3. Access to non-optimized blocks
5.

indirectly (e.g. OPN DE[i])

6.

Copying of structures between optimized and non-optimized blocks (apart from
Array of Bytes)

Ch 14 OOP

37

3.5 Retentivity

In the event of a failure of the power supply, the controller copies the retentive data
with its buffer energy from the controller's work memory to a non-volatile memory.
After restarting the controller, the program processing is resumed with the retentive
data. Depending on the controller, the data volume for retentivity has different
sizes.

Table 3-6: Retentive memory for S7-1200/1500

Usable retentive memory for bit memory,

Controller times, counters, DBs and technology
objects

CPU 1211C,1212C, 1214C, 1215C, 1217C 10 kByte

CPU 1511-1 PN 88 kByte

CPU 1513-1 PN 88 kByte

CPU 1515-2 PN, CPU 1516-3 PN/DP 472 kByte

CPU 1518-4 PN/DP 768 kByte

Table 3-7: Differences of S7-1200 and S7-1500

S7-1200 S7-1500

Retentivity can only be set for bit memory Retentivity can be set for bit memory, times
and counters

Advantages

¢ Retentive data maintains its value when the controller goes to STOP and back
to RUN or in the event of power failure and a restart of the controller.

Properties

For elementary tags of an optimized DB the retentivity can be set separately. Non-
optimized data blocks can only be defined completely retentive or non-retentive.

Retentive data can be deleted with the actions "memory reset" or "Reset to factory
settings" via:

¢ Operating switch on the controller (MRES)
¢ Display of the controller
¢ Online via STEP 7 (TIA Portal)

Recommendation

¢ Do not use the setting "Set in IDB”. Always set the retentive data in the function
block and not in the instance data block.
The "Set in IDB” setting increases the processing time of the program
sequence. Always either select "Non-retain” or "Retain” for the interfaces in the
FB.

Ch 14 OOP

38

3.5 Retentivity

Figure 3-24: Program editor (Functions block interfaces)

¥ Static
= » instTofTimePulse TOF_... E\ INcn-retain 'I
a

» instTofimePause TOF_TIME m
Retain
[0.0 .
statFrequency Real Setin IDB

] statTimePeriod Time £0ms e

- statTimePulse Time £0ms Mon-retain

Figure 3-25: Program editor (data block)

Building
Name Data type Startvalue | Retain Jaccessiblef...

@~ Static] El

<] = fanSpeed1 Real 0.0 B =2
<] = temperaturel Real 0.0 g g
40 = light1 Bool false M =
< = fanSpeed2 Real 0.0 i~ [«
4] = temperature2 Real 0.0 v [
] = light2 Bool false v [V
<] = fanSpeed3 Real 0.0 [:] E
= temperature3 Real 0.0 ™2 =
4] = light3 Bool false I~ =2

Example: Retentive PLC tags

The setting of the retentive data is performed in the tables of the PLC tags, function
blocks and data blocks.

Figure 3-26: Setting of the retentive tags in the table of PLC tags

@ 2 % [m]
PLC tags
MName Tag table Data type Address
1 -a sctivateleft Defaulttag table F] Bool 'E‘ w00
2 <@ activateRight Defaulttag table Bool =01
3 a Retain memory P9
4 <a
s a Mumber of memory bytes starting at MBO:
6

Number of SIMATIC timers starting st T0: |0
Retentivity can be set from
address 0 onward!

currently available retsin memory (oytes): | 20784 | e.g. from MBO, TO or CO

MNumber of SIMATIC counters starting at 00: ICI

'—Gl—q [Cancel |

Ch 14 OOP

Example: Retentive counter

Note

You can also declare instances of functions (timer, counter, etc.) retentive. As
already described in chapter 3.2.5 Multi-instances, you should always program
such functions as multi-instance.

Figure 3-27: Retentive counter as multi-instance

4 <] ¥ Static
5 <0 ® ¥ InstPackageCounter CTU_INT @ _Retain vI
6 @ - cu Bool false Non-retain
- . Retain
[i
b 0 Bocl _ Setin IDB |
8 4 . R Bool false
9 4] . LD Bool false Retain
10 41 - Qu Bool false Retain
<]
b Block title:

- Network 1:

#InstPackageCou
nter

Ccu
Int
#statCountSignal — cu #statCurrentCoun
false — R oV — tervalue
50 PV Q—

If the retentive memory on the PLC is not sufficient, it is possible to store data in
the form of data blocks that are only located in the load memory of the PLC. The
following entry is described by taking the example of an S7-1200. This
programming also works for S7-1500.

More information can be found in the following entries:

How do you configure data blocks in STEP 7 (TIA Portal) with the "Only store in
load memory" attribute for a S7-1200?
https://support.industry.siemens.com/cs/ww/en/view/53034113

Using Recipe Functions for persistent Data with SIMATIC S7-1200 and S7-1500
https://support.industry.siemens.com/cs/ww/en/view/109479727

Ch 14 OOP

40

3.6

3.6.1

Advantages

Symbolic addressing

Symbolic instead of absolute addressing

The TIA Portal is optimized for symbolic programming. This results in many
advantages. Due to symbolic addressing, you can program without having to pay
attention to the internal data storage. The controller handles where the best
possible storage is for the data. You can therefore completely concentrate on the
solution for your application task.

Easier to read programs through symbolic tag names
Automatic update of tag names at all usage locations in the user program

Memory storage of the program data does not have to be manually managed
(absolute addressing)

Powerful data access
No manual optimization for performance or program size reasons required
Auto-complete for fast symbol input

Fewer program errors due to type safety (validity of data types is checked for
all accesses)

Recommendation

Example

"Don’t worry about the storage of the data”

"Think” symbolically. Enter the "descriptive” name for each function, tag or
data, such as, for example, Pump_boiler_1, heater room_4, etc. Thus a
created program can be simply read, without requiring many comments.

Give all the tags used a direct symbolic name and define them afterwards with
a right-click.

Table 3-8: Example for creating symbolic tags

Step Instruction

1.

Open the program editor and open any block.

Enter a symbolic name directly at the input of an instruction.

£instErrorMessag
e

™AL C
o= EN
:sra il ;_Eh)_s DONE — ...
e | BUSY — -
TEXT ERROR = ...
MAIL_ADDR_ STATUS
PARAM - ENO =

Ch 14 OOP

3.6 Symbolic addressing

Step Instruction
3. Right-click next to the block and select "Define tag...” in the context menu.
#iInstErrorMessag -
e @ Define tag... Ctrl+Shift+l
TMAIL_C =/ " ome tag ctrleShiftaT
—EN R N S —
slce — REQ X cut Ctri-ox
_statheil — TO_S DOME — - 35| Cop +
<777 — SUBJECT BUSY — .. & Past
TEXT ERROR — .. % O
MAIL_ADDR_ R - Go'to ’
g £ x ENO — TETErence 1IN 1atior >N+
Compile
Download to device
13§ Insert network Crl+R
Insert STL network
Insert SCL network
Insert empty box Shift+F5
&F |nsert comment
El
L Ot nerate
4. Define the tag.
Define tag
Name Section Address Datatype PLCtagtable Comment
stathail Local Static |v| String F‘ :-
Local In
Local Out @
Local InOut
Local Static
Local Temp
Global Mernory
Global Input
Global Output

There is an elegant method to save time, if you want to define several tags in a
network. First of all, assign all tag names. Then define all tags at the same time
with the dialog of step 4.

Note

More information can be found in the following entry:

What are the advantages of using symbolic addressing for S7-1500 in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67598995

Ch 14 OOP

42

3.6.2 ARRAY data type and indirect field accesses
The ARRAY data type represents a data structure which is made up of several
elements of a data type. The ARRAY data type is suitable, for example, for the
storage of recipes, material tracking in a queue, cyclic process acquisition,
protocols, etc.
Figure 3-28: ARRAY with 10 elements of the Integer (INT) data type
Name Data type
4l " v statAmay Array[0..9] of Int ||| =
< = statArray{0] Int
< = statArray{1] Int
< = statArray{2] Int
< = statArray{3] Int
| = statArray{4] Int
a = statArray(5) Int
«a = statArray[6] Int
a = statArray{7] Int
«a = statArray(8] Int
@ = statArray{9] Int
You can indirectly access individual elements in the ARRAY with an index (array
["index"]).
Figure 3-29: Indirect field access
KOP / FUP: SCL:
MOVE 1 #statField := #statArray([#statIndex];
w==EN —
#statArray[#statin 3 OUT1 — #statfield
dex] — v & —
Advantages
+ Easy access through ARRAY index
¢ No complicated pointer creation required
e Fast creation and expansion possible
e Useable in all programming languages
Properties

e Structured data type
* Data structure made of fixed number of elements of the same data type
* ARRAYSs can also be created multi-dimensional

* Possible indirect access with runtime tag with dynamic index calculation at
runtime

Ch 14 OOP

Recommendation

Note

Use ARRAY for indexed accesses instead of pointer (e.g. ANY pointer). This
makes it easier to read the program since an ARRAY is more meaningful with
a symbolic name than a pointer in a memory area.

As run tag use the DINT data type as temporary tag for highest performance.

Use the "MOVE_BLK” instruction to copy parts of an ARRAY into another one.

Use the "GET_ERR_ID" instruction to catch access errors within the Array.

More information can be found in the following entries:

How do you implement an array access with an S7-1500 with variable index?
https://support.industry.siemens.com/cs/ww/en/view/6 7598676

How do you address securely and indirectly in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/97552147

In STEP 7 (TIA Portal), how do you transfer S7-1500 data between two tags of
the data types "Array of Bool" and "Word"?
https://support.industry.siemens.com/cs/ww/en/view/108999241

Ch 14 OOP

44

3.6.3

Formal parameter Array [*] (V14 or higher)

With the formal parameter Array [*], arrays with variable length can be transferred

to functions and function blocks.

With the instructions "LOWER_BOUND" and "UPPER_BOUND" the array limits

can be determined.

Advantages

Example

Figure 3-30:Initializing different arrays

Main

Optimum readability due to fully-symbolic programming
* No pointer programming for arrays of different lengths necessary anymore

MName Data type

< b Input
< * Temp

<gj= » tempArayl
= » temphrray2

Array{0..125] of Real
Array[10..80] of Real |z

(7, O S FY R N

—
< » CLonstant

A A =0 — 1

» Block title: “Main Program Sweep (Cycle)”

¥ Network 1: Arrayinitialization

[p—— EN

EN
#tempArray2 quantityArray

nitArray’

ENO

“InitArray"

ENQ =

InitArray
Name Data type Default value

1 <@ » Input
2 <@ » Output
3 4@~ InOut
4 4= » quantityAray Arrayl*] of Real @Z\
5 4@~ Temp
6 &@-n» tempLower Dint
7 4]nm tempUpper Dint
E @-» count Dint

CASE... FOR... WHILE..

IF.. "oF.. ToDO. DO...

(*..) REGION

Blocks that can process the flexible arrays with different lengths

5 #quantityArray[#count] :=
& |END FOR;

1 4#tempLower := LOWER_BOUND(ARR := #quantityArray, DIM :=
2 #tempUpper := UPPER BOUND(ARR := #quantityhrray, DIM :=

4 CJFOR #count := §templower TO #ctempUpper DO

0.0:

Ch 14 OOP

45

3.6.4 STRUCT data type and PLC data types

The STRUCT data type represents a data structure which is made up of elements
of different data types. The declaration of a structure is performed in the respective

block.

Figure 3-31: Structure with elements with different data types
Marne Data type Default value

< = ¥ stmatEngineData Struct

< B ¥ power Struct

< - maxpower Int 1000

BT - cosPhi Real 0.89

a = ¥ oputputValues Struct

<a voltage Real

a current Real

<

frequency Real

NEWS

In comparison to structures, PLC data types are defined across the controller in the
TIA Portal and can be centrally changed. All usage locations are automatically

updated.

PLC data types are declared in the "PLC data types” folder in the project navigation

before being used.
Figure 3-32: PLC data types

typeEngineData
MName

4] ¥ power

<] . maxpower

4ds= cosPhi

< ¥ outputValues

asn voltage

4] . current

. frequency

] ProgrammingGuideline :
B Add new device [
& Devices & networks
(@ TransportBelt [CPU 1511-1...
[IY pevice configuration
E Online & diagnostics
» rﬁl Program blocks
» [Technology objects
> 2—{ Energy objects
b @} External source files

=T

O o~ o AW =

~ [§ PLC data types
I Add new data type
I&| typeEngineData

Advantages

Data type
Struct
Int

Real
Struct
Real
Real
Real

Default value

1000
0.89

e Achange in a PLC data type is automatically updated in all usage locations in

the user program.

e Simple data exchange via block interfaces between several blocks

e In PLC data types STRING tags with defined length can be declared (e.g.,
String[20]). As of TIA V14 a global constant can also be used for the length

(e.g., String[LENGTH]).

If a STRING tag is declared without defined length, the tag has the maximum

length of 255 characters.

Ch 14 OOP

46

Properties
¢ PLC data types always end at WORD limits (see the figures below).
* Please consider this system property when ...

- using structures in I/O areas (see chapter 3.6.5 Access to |/O areas with
PLC data types).
- using frames with PLC data types for communication.

- using parameter records with PLC data types for I/O.
- using non-optimized blocks and absolute addressing.

Figure 3-33: PLC data types always end at WORD limits
PLC datatype elements

A A A
1. WORD
Defined size
3 Bytes L
A
v
' | 2.woRD
I Acutal size : !
1
e 4Bytes i n 1y
Figure 3-34: PLC data types on I/O areas
PLC data type /O area
typeControlBelt o 1 3 & 5 & 7
| [name Data type Rail_0
@ belick epe 3 Bytes
@ beliddle eyte
@ behRight Byte
Tag of S
PLC data type I
| | I General 10 tags System constants Texts
o — |Add e Address table | ment mainBelt MrneCantelRel’
l}« » r-n.ajinBeh‘. |‘typeCpr|tru|Belt’ I@ %Q0.0] Im:|z§ |au;|c|.u - E[mn = maingelt = maingelth..
1 ' ’ Defined size | | |1 i
: 3Bytes | | |" '
e e 1 '
Boal %026 1 1
Bool %Q27 1)
Boal %030 - d
Boal %03.1 1
Boal ®03.2 || |
oo Acutal size| |! 1
Bool 4 Bytes I' 1
Boal %036 1
S | J
Recommendation

e Use the PLC data types to summarize several associated data, such as, e.g.
frames or motor data (setpoint, speed, rotational direction, temperature, etc.)

Ch 14 OOP 47

3.6.5 Access to /O areas with PLC data types

With S7-1500 controllers, you can create PLC data types and use them for
structured and symbolic access to inputs and outputs.

Figure 3-35: Access to I/O areas with PLC data types

PLC data type
Name Data type Default value
Iy |a beltLeft Byte |i§)| 160
a beltMiddle Byte 1650
3 4a beltRight Byte

PLC tag

Name Data tvpe A piress
I)_ mainBelt “typeControlBelt® %Q0.0
T T 1 [a]

FB call) FB interface

Insth‘la:gﬁelt(om MainBeltControl
- I:orr:e Data type
-EN ENO & P input
41l v Output

| beltControl — "MainBelt" |mmm—p

&= v beltControl “typeControlBelt”
°n - beltLeft Byte
i) - belthMiddle Byte

a0l - beltRight Bvte
1l » Inout |

<0 » Static

1 » Temp

]

7. PLC data type with all required data

8. PLC tag of the type of the created PLC data type and start address of the I/O
data area (%Ix.0 or %Qx.0, e.g., %I0.0, %Q12.0, ...)

9. Transfer of the PLC tag as actual parameter to the function block
10. Output of the function block is of the type of the created PLC data type

Advantages
e High programming efficiency
e Easy multiple usability thanks to PLC data types

Recommendation

e Use PLC data types for access to I/O areas, for example, to symbolically
receive and send drive telegrams.

Note Individual elements of a PLC data type of a tag can also be directly accessed in
the user program:

MOVE
EN — ENC

1652387 =N #beltControl.
¥ ouTt belileft

Ch 14 OOP 48

3.6.6 Slice access

For S7-1200/1500 controllers, you can access the memory area of tags of the Byte,
Word, DWord or LWord data type. The division of a memory area (e.g. byte or
word) into a smaller memory area (e.g. Bool) is also called slice. The figure below
displays the symbolic bit, byte and word accesses to the operands.

Figure 3-36:Symbolic bit, byte, word, DWord slice access

~ 1
myByteVariable” BYTE
) L 1
Operands in ;
Blocks, DBs und < .myWordVariable’ | WORD
O E"S
i 1
1 jable DWORD
i_ ------- -“;a~‘ -My?ouhleWardVaruable
1
w_ .mylLongWordVariable LWORD
e — o 2 i
L]
i
Examples b
Slice access:,,myLongWordVariable.%D1" | :,,my_DoubleWord\raﬂable,%nm" LmyWordVariable.%.X0"
1
[
b4 [R N S XIX|X| gi i
2 i r 4 211la Bit by bit
1
[]
1
L - e - B B0 Byte by byte
o
w3 fee-- § SEEETEESE w1 W0 Woerd by word
[
i
[a}] Do Dword by
DWord

Advantages
¢ High programming efficiency
« No additional definition in the tag declaration required
e Easy access (e.g. control bits)

Recommendation

e Use the slice access via AT construct rather than accessing certain data areas
in operands.

Note More information can be found in the following entry:

How in STEP 7 (TIA Portal) can you access the unstructured data types bit-by-
bit, byte-by-byte or word-by-word and symbolically?
https://support.industry.siemens.com/cs/ww/en/view/57374718

Ch 14 OOP

49

3.6.7 SCL networks in LAD and FBD (V14 and higher)

With SCL networks you can make calculations in LAD and FBD that can only be
programmed with considerable effort in LAD and FBD instructions.

Figure 3-37: Inserting SCL network

e I
a pse
@ Ctrl+X
=) Copy Cerl+C
B Paste Ctr kcheckFeeder3
- 11
Define tag... Crrl+Shift+l L
Rename tag... Ctrl+Shift+T
Rewire tag... Ctrl+Shift+P
¥ Delete Del

Cross-reference information Shift+F11

Compile
Download to device

w3 Insert network Ctrl+R
Insert STL network

Insert SCL network
Set network title automatically
Network 2: Motor power data

SCL Network

1 // calculate the motor power data
2 #activePower := #statU * #stacl;
¢realPower := #statU * $#scacl * COS5(#stacPhi);
4 #reactivePower := #3tatlU * #statl * SIN(#statPhi);

Advantages
¢ Time saving through efficient programming
+ Clear code, thanks to symbolic programming

Properties
¢ Supports all SCL instructions
s Supports comments

Recommendation

¢ Use the SCL networks in LAD and FBD for mathematical calculations instead
of instructions, such as ADD, SUBB etc.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ch 14 OOP

https://creativecommons.org/licenses/by/4.0/

