
 Ch 14 OOP 1

Chapter 14 OOP

Introduction

What is OOP? OOP is short for Object Oriented Programming and implies an object is the focus

of the program. This chapter discusses the use of objects in PLC programming and their use for

making programs that are more readable. Software engineering in general has looked for

programming tools that allow more robust and reliable computer programs.

Earlier programming discussions of “top-down” computer programming and “structured

programming” have evolved into the use of objects that encapsulate an idea and stand alone in

the program as that evolved concept. The overall idea of any programming endeavour has been

to break the problem down into component parts and solve each part as it pertains to the whole

and then combine the parts into a unified overall program. While the idea of a data structure is

important, the focus of a top-down program or structured program would focus on the structure

or flow rather than the task.

OOP

The idea of pluggable entities or “lego” modules implies that modules can be created that can be

plugged into one another and perform as a whole. This entails the idea of information that may

be needed only inside the “lego” program and thus hidden from the outside world, in short, the

idea of encapsulation. This leads to the idea of objects and object oriented programming or

OOP. In OOP, the data is protected since it can be manipulated only inside the shell or protected

program called the object. The logic is protected since it is only executed inside the object and

the details of the program are known inside the object as to how the program and data interact.

OOP protects the data. It is easier to write in a general sense since the module can block out

other programming considerations and the data can be stored inside the OOP as opposed to

elsewhere. Data can, obviously, be stored anywhere the programmer wants but the protection of

the OOP gives a security that wasn’t available in earlier programming methods. And the

programmer and the end user can focus on the object. This gives a great advantage to

maintaining the program since the focus is placed where it was originally intended, on the object

itself. And if some part changes, the programmer is reminded of the entity that is being affected

and that changes should be studied as a whole for the object and not for just a part of the object.

In the case of maintainability of control programs for the factory floor, the diagnostic part should

be modified when the control portion is modified. If encapsulated, the programmer is reminded

of both together since both should be encapsulated inside the object.

The programming language C refers to an object as a class. Other languages have similar

names. In Siemens S7-Basic, the object is referred to as a Function (FC) or Function Block

(FB). Allen-Bradley’s RSLogix 5000 also has introduced a function with version 18 called the

AOI or add-on instruction. While it will not be featured in this chapter, its use is similar to the

function or function block described here.

To program an FC or FB, first identify the object or objects involved. Identify the messages or

 Ch 14 OOP 2

signals the object needs to respond to and the outputs that result from these messages or signals.

The FC or FB, while considered a class, may also be considered a template for the program.

And the idea of FB’s or FC’s calling other FB’s or FC’s is a powerful concept and creates the

idea of sub classes or sub-sub classes. The FC or FB can also be re-used again and again in the

same or other programs for the same or different clients. This gives the idea of a class or OOP a

huge advantage over conventional programming as we build programs over the years or from job

to job.

Arguments for the benefits of reusability include:

Reliability

Efficiency of programming effort

Saving time in program development

Decreased maintenance effort

Resulting cost savings

Consistency of programs

Some additional terms of OOP include:

 Encapsulation – combining of programs and data to manipulate outcome in an object

 Inheritance – building a hierarch of objects, each with inheritance of the parent object

 Polymorphism – allowing one set of actions to share an object with another set of actions

FCs can be locked by the creator. This helps to preserve and protect the code and can actually

help to simplify the overall program by firmly defining a functionality that is unchanged from

one instance of code to another. STEP7 enables the user to create a storage location for custom

functions called a Library. Several frequently used standardized and system functions are

provided to the user in several libraries included with STEP7. The user can create a custom

library and add items as needed, supporting programming standardization across projects.

The S7 architecture also supports the structuring of user-defined data storage locations, called

data blocks, and reusable data templates called PLC Data Types.

The S7-1200 and 1500 controllers use programming elements that comply with IEC 61131-3

standard. At the core of the programming structure are code and data containers, known

collectively as “Blocks”. The programmable logic controller provides various types of blocks in

which the user program and the related data can be stored. Depending on the requirements of the

process, the program can be structured in different blocks.

Organization blocks: (OB’s) form the interface between the operating system and the user

program. The entire program can be stored in OB1 that is cyclically called by the operating

system (linear program) or the program can be divided and stored in several blocks (structured

program).

Function: (FC’s) contains a partial functionality of the program. It is possible to program

functions so that they can be assigned parameters. As a result, functions are also suited for

 Ch 14 OOP 3

programming recurring, complex partial functionalities such as calculations. System functions

(SFC) are parameter-assignable functions integrated in the CPU‘s operating system. Both their

number and their functionality are fixed. More information can be found in the Online Help.

Function Block: (FB’s) offer the same possibilities as functions. In addition, function blocks

have their own memory area in the form of instance data blocks. As a result, function blocks are

suited for programming frequently recurring, complex functionalities such as closed-loop control

tasks. System function blocks (SFB) are parameter-assignable functions integrated in the CPU‘s

operating system. Both their number and their functionality are fixed.

Data Blocks: (DB’s) are data areas of the user program in which user data is managed in a

structured manner.

Permissible Operations: You can use the entire operation set in all blocks (FB, FC and OB).

We will now start to explore these basic “program structuring elements” of S7 beginning with

the FC, or Function. A Function is defined by the IEC 61131 standard as a code container that

does not retain internal values from one scan to the next. Functions in the S7 PLC behave in this

fashion, and act as a container for user developed program code. A function may have a set of

local variables defined for use within the function. Typically, when “called” in the main

program, a function will have new “values” (or actual parameters) loaded into the local variable

(called formal parameters) for use during execution of the function. Once the “results” are

calculated and function execution finishes, the resulting “output value(s)” get returned to the

main program.

Before you can create the program for the parameter-assignable FC, you have to define the

formal parameters in the declaration table. It is up to the programmer to select the declaration

type for each formal parameter.

• The ‘IN‘ declaration type should be assigned only to declaration types that will be read for

instructions in the subroutine.

• Use the ‘OUT‘ declaration type for parameters that will be written to within the function.

• Use the “IN_OUT” for formal parameters that need to have a reading access and a writing

access, such as a bit passed into the block that is used in the block for an edge operation.

• TEMP variables are intended to be used for holding interim calculation values or other

values that are only required when the block is executing. TEMP variables exist in the local data

stack while the block is executing and are overwritten when the block exits. The TEMP variables

are - even though they are listed under "Interface" - not components of the block interface, since

they do not become visible when the block is called and that no actual parameters have to be

passed for the declared TEMP variables in the calling block.

The interface of a block forms the IN, OUT, and IN_OUT parameters. The RETURN parameter

is a defined, additional OUT parameter that has a specific name according to IEC 61131-3. This

parameter only exists in FCs in the interface. The declared formal parameters of a block are its

interface to the "outside" meaning they are "visible" or relevant to other blocks that call this

block. If the interface of a block is changed by deleting or adding formal parameters later on,

then the calls have to be updated.

 Ch 14 OOP 4

When an FC is added to a project, the FC is accessible via the Project Browser. When the FC is

to be executed must be determined. This is defined by which OB in which the FC is to be called.

For example, if the FC is to be executed every scan, it is placed in OB1. To call an FC in OB1,

drag and drop the FC from the project browser onto a network.

Blocks Types

This is primarily a Siemens concept although Allen-Bradley has also introduced the idea with

their function blocks in later versions of RSLogix 5000.

Global DBs

A data block (DB) is a data area in the user program containing user data. Global data blocks

store data that can be used by all other blocks. The structure of the global data blocks is user

defined.

Several Types of Blocks in STEP 7 Basic

Interaction between the operating system and the various block types is pictured below:

“

 Ch 14 OOP 5

Operating

System

OB 20x
Hardware

These interrupt OBs can be triggered by

high-speed counters and input channels.

FC Global

FB
Instance

DB

OB 82
Diagnostic

If a diagnostics-capable module in which the

diagnostic error interrupt is enabled detects

an error, this module triggers a diagnostic

error interrupt. There is only one OB with the

fixed number 82.

Same as for OB above

OB 80
Time Error

The operating system calls the time error

interrupt, OB80, if one of the following

events occurs:

1. The cyclic program exceeds the maximum

cycle time

2. The called OB is currently being executed

3. An overflow has occurred in an interrupt OB

queue

4. Interrupt loss due to high interrupt load

Same as for OB above

”

 Ch 14 OOP 6

We will begin with a Function and start the project at the end of the chapter. Remember the

directions from Ch. 8 – no instructions other than contacts and coils could be used to add two 16-

bit numbers. The following show an 8-bit version of the same problem:

BYT_0
BYT0

Bit0

BYT0

Bit1

BYT0

Bit2

BYT0

Bit3

BYT0

Bit4

BYT0

Bit5

BYT0

Bit6

BYT0

Bit7

BYT_1
BYT1

Bit0

BYT1

Bit1

BYT1

Bit2

BYT1

Bit3

BYT1

Bit4

BYT1

Bit5

BYT1

Bit6

BYT1

Bit7

RSLT
RSLT

Bit0

RSLT

Bit1

RSLT

Bit2

RSLT

Bit3

RSLT

Bit4

RSLT

Bit5

RSLT

Bit6

RSLT

Bit7

CARYIN
CARY

IN

Bit1

CARY

IN

Bit2

CARY

IN

Bit3

CARY

IN

Bit4

CARY

IN

Bit5

CARY

IN

Bit6

CARY

IN

Bit7

For the application, we need a FC rather than an FB since there is nothing to remember from

function to function. Something comes in. Something goes out. Nothing is set in the function

we need to remember. Choose Add new block, then Function and we will choose LAD (Ladder)

because of the need for only contacts and coils:

 Ch 14 OOP 7

Notice at left, we are now in the Function “Block_1” and we have a new network to start.

Click here to view Variables

These variables are the ones inside the Function and are, in our case, Bool. We give pseudo-

names to these variables and begin to program the program inside the Function:

 Input – InBitWd1
 InBitWd2
 Output - SumBit
 In/Out - Carry

 Ch 14 OOP 8

As can be seen later, the Input, Output and InOut variables are the ones that are visible inside the

Function when used in OB1.

Using these pseudo-variables, we enter the program inside the Function:

 Ch 14 OOP 9

After building the logic, right click on Block_1 in the project tree and compile the function:

Now, we are ready to incorporate the FC in the main program OB. We first add the words we

want to add together:

After the words to be added are defined, we start programming in OB1. First, we add the logic

for bit 0. This is a half-adder and we need only build this logic once. Then we drag the block

Block_1 from the left and add it to the logic. We finish the process by adding the word.bit

addresses for bit 1 to this function. We now are ready to add the bits 2-15 with function block

for each and we are complete. This is left as an exercise.

 Ch 14 OOP 10

A review of the Variables inside the FC and FBs defined by Siemens:

Before you can create the program for the parameter-assignable block, you have to define the

block parameters in the Interface table. The block interface allows local tags to be created and

managed.

The tags are subdivided into two groups shown by the table below:

Block parameters that form the block interface when it is called in the program

Type Section Function Available in

Input parameters Input Parameters whose values are
read by the block

Functions, function blocks and
some types of organization
blocks

Output parameters Output Parameters whose values are
written by the block

Functions and function blocks

InOut Parameters InOut Parameters whose values are
read by the block when it is
called, and whose values are
written again by the block
after execution

Functions and function blocks

Local data that are used for storage of intermediate results

Type Section Function Available in

 Ch 14 OOP 11

Temporary local
data

Temp Tags that are used to store
temporary intermediate
results. Temporary local data
are retained for only one
cycle

Functions, function blocks and
organization blocks

Static local data Static Tags that are used for storage
of static intermediate results
in the instance data block.
Static data is retained until
overwritten, which may be
after several cycles

Function blocks only

A review of when Temporary Tags are active:

OB 1

FC 17
with

temp

tags

FC 20
with

temp

tags

FC 30
with

temp

tags

Operating

System

1

2

7

3

4

5

6 OB 1 OB 1 OB 1 OB 1 OB 1 OB 1 OB 1

FC 17 FC 17 FC 17 FC 17 FC 17

FC 20 FC 30

1 2 3 4 5 6 7

Fig. 14-1

Creating an FB Block

“FB – Function block Code blocks that store their values permanently in instance data blocks, so

that they remain available even after the block has been executed.

All In-, Out-, InOut- parameters are stored in the instance DB – the

instance DB is the memory of the FB.

Definition Function blocks are code blocks that store their values permanently in

instance data blocks, so that they remain available even after the block has

been executed. They save their input, output and in/out parameters

permanently in the instance data blocks. Consequently, the parameters are

still available after the block execution. Therefore they are also referred to

as blocks "with memory".

Block Interface The block interface for an FB looks similar to that of an FC. There are two

groups of Block interface tags:

 Ch 14 OOP 12

1. Block parameters that form the block interface when it is called in the

program.

- Input, Output, and In/Out parameters are a part of this group

 2. Local data that are used for storage of intermediate results

- Temporary local data and Static local data are part of this group

Static Local Data An instance DB is used to save static local data. These static local data can

only be used in the FB, in whose block interface table they are declared.

When the block is exited, they are retained.

Parameters When the function block is called, the values of the actual parameters are

stored in the instance data block.

If no actual parameter is assigned to an interface parameter in a block call, then the last value

stored in the instance DB for this parameter is used in the program

execution.

You can specify different actual parameters with every FB call. When the function block is

exited, the data in the data block is retained. To keep the data unique for

each instance of a call it is required to assign a different instance DB each

time a call instruction to an FB is written in code.

You can program parameter-assignable blocks for frequently recurring program code. This has

the following advantages:

1. The program only has to be created once, which significantly reduces

programming time.

2. The block is only stored in the user memory once, which significantly

reduces the amount of memory used.

3. The FB can be called as often as you like, each time with a different

address assignment. For this, the interface parameters (input, output, or

in/out parameters) are supplied with different actual operands every time

called.

Multi-instance data block

Definition Multi-instances enable a called function block to store its data in the

instance data block of the calling function block. This allows you to

concentrate the instance data in one instance data block and thus make

better use of the number of instance data blocks available.”

 Ch 14 OOP 13

So, where do most programmers write the majority of their code when using Siemens? That is a

good question but one that should consider the use of FB’s as the main area for large control

programs. Why? We have the ability to use static global variables in this area and also the

ability to have all the variable types including arrays present. In the classroom environment, it is

not necessary to consider this because programs here probably are rather small. When they

grow, however, use the FB as a primary area for large programming efforts.

Later, in the Lab Text, we will see what the Festo Programs give in the way of FB’s. They are

very large and complex.

Summary

This chapter introduces the student to the important concept of functions and function blocks

from Siemens. It is not a complete study of this subject. In the appendix below is found a more

thorough discussion as well as a discussion of optimization techniques using functions and

function blocks. Data types are discussed as well here, a subject that has been discussed in

earlier chapters but not to the extent as found in this appendix. The movement toward functions

and function blocks from Siemens shows a steady move to convince the programming engineer

that their organizational advantages are to be considered.

The appendix also explains more thoroughly global versus local data. Also, the subject of

retentive data and how it is saved is shown. An example of newer programming techniques such

as interspersing SCL in a network in a LAD program is shown as well. This provides very

powerful design in program building.

Personally, I have not had many opportunities to use functions and function blocks in real-world

applications. Most programs written by myself have been unique to the point that the

organization of functions and function blocks gave little or no advantage. Even so, they should

be understood because of their organizational advantages and time saved in constructing

programs that may be used more than once.

 Ch 14 OOP 14

Lab 14.1

Revisit the Binary Addition/Binary Subtraction lab from chapter 8 to subtract one 16 bit word

from another and put the 16 bit result in a third word using a function and using the Siemens TIA

software.

Remember:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 carry 1

1 + 0 + carry = 0 carry 1

1 + 1 + carry = 1 carry 1

These are the rules for binary addition.

To see binary addition at work:

Carry 1 1 1 1

 Number 1 0 1 0 0 1 1 0 1 1 0 0

+ Number 2 0 1 0 1 1 0 1 1 0 1 0

 Results 1 0 1 0 1 0 0 0 1 1 0

Binary addition may take place in ladder logic. Instructions are provided to carry out this

function (ADD), but it is worthwhile to examine the process of binary addition using ladder logic

Since Bit 0 does not have a carry_in, half-adder logic may be employed but only for this bit. It

can be seen that half-adder logic is simpler than full-add logic by comparing Fig. 8-35 (Half-

Adder) to Fig. 8-36 (Full Adder).

BYT_0
BYT0

Bit0

BYT0

Bit1

BYT0

Bit2

BYT0

Bit3

BYT0

Bit4

BYT0

Bit5

BYT0

Bit6

BYT0

Bit7

BYT_1
BYT1

Bit0

BYT1

Bit1

BYT1

Bit2

BYT1

Bit3

BYT1

Bit4

BYT1

Bit5

BYT1

Bit6

BYT1

Bit7

RSLT
RSLT

Bit0

RSLT

Bit1

RSLT

Bit2

RSLT

Bit3

RSLT

Bit4

RSLT

Bit5

RSLT

Bit6

RSLT

Bit7

CARYIN
CARY

IN

Bit1

CARY

IN

Bit2

CARY

IN

Bit3

CARY

IN

Bit4

CARY

IN

Bit5

CARY

IN

Bit6

CARY

IN

Bit7

 Ch 14 OOP 15

Accessing Bits in Words (Siemens)

Accessing a tag with an AT overlay

The AT tag overlay allows you to access an already-declared tag of a standard access block with

an overlaid declaration of a different data type. You can, for example, address the individual bits

of a tag of a Byte, Word, or DWord data type with an Array of Bool. To overlay a parameter,

declare an additional parameter directly after the parameter that is to be overlaid and select the

data type "AT". The editor creates the overlay, and you can then choose the data type, struct, or

array that you wish to use for the overlay.

 Ch 14 OOP 16

Rules

• Overlaying of tags is only possible in FB and FC blocks with standard access.

• You can overlay parameters for all block types and all declaration sections.

• An overlaid parameter can be used like any other block parameter.

• You cannot overlay parameters of type VARIANT

• The size of the overlaying parameter must be less than or equal to the size of the overlaid

parameter.

• The overlaying variable must be declared immediately after the variable that it overlays

and identified with the keyword “AT”.

Complete the lab using a function instead of coding each network as separate logic.

Binary Subtraction:

To perform binary subtraction, the easiest method is to find the 2’s complement of the second

number and then add the two numbers together.

The best method of finding the 2’s complement requires the use of a memory bit. The rule

requires that bits from the original number be copied to the 2’s complement number starting at

the right-most bit. The rule applies until a “1” is encountered. The first “1” is copied but a

memory bit is set after which the bits are “flipped”. Try this rule. It works and may be

employed using ladder logic and a Latch bit to quickly find the 2’s complement of a number.

The logic for finding the 2’s complement of a number in ladder logic is begun in Fig. 8-37.

Again, logic must be added to complete the function using rungs similar to rungs 4 and 5 of this

figure but using bits 2 through15.

Again, code the logic using a function.

 Ch 14 OOP 17

Lab 14.2

Implement the following:

Linking PLC UDT Tags to HMI Faceplates and Pop-ups

https://www.dmcinfo.com/latest-thinking/blog/id/9136/linking-plc-udt-tags-to-hmi-faceplates-

and-pop-ups-in-tia-portal-v13-sp1

Lab 14.3 Repeat Lab 13.2C1 using an FB and UDT – Whack-a-Mole

Lab 13.2C Add a table of results including whether the player hit the light while the light was

on and how long the response was delayed from when the light first turned on.

Results for each hit are to be saved sequentially in the table.

Lab 13.2C1 Implement 13.2C above with a UDT output table. Save sequential hit data for

later display or analysis.

 Ch 14 OOP 18

Problems

1. Three types of parameters for interface of a function are:

 a

 b

 c

2. Local data is of two types. They are:

 a

 b

3. Data blocks are either Single ____ or multi _____. What is the deciding factor which to use?

4. List some program blocks that are standard.

5. Describe a function or function block that would have the title “Engine” and have two types

of engines that could be called – Diesel or Gasoline.

6. What is the A-B process for adding a function?

For the next three programs, only use skeletal statements but enough to get the idea:

7. In the Kitchen:

In the kitchen are several needs for automation including cooking breakfast. In the breakfast

shelf are several kinds of cereal including oatmeal, cream-of-wheat and grits. Each requires

the microwave and a cooking time. Each requires an amount to be weighed on a scale.

When the weight is achieved, the bowl is placed in the microwave for a time period. Write a

program using FC’s or FB’s to achieve cooking of the breakfast cereal.

8. Three numbers are to be added and the result displayed. Use a FC or FB to accomplish this.

9. In OB1, there is a FC1 accessed that subtracts 1 from a number. Build the function block

SUB1 to complete the operation. Show all tables and logic:

FC1
“SUB1”

In_Num

Out_Num

“S3”

“X3”

 Ch 14 OOP 19

10. In OB1, there is a FC1 accessed that does the following:

FC1
“INV”

In_Num

Out_Num

“S3”

“X3”

“B0” In_Bit

In_Num

Out_Num

Copy In_Num into Out_Num
except for the bit 0 which is
the exclusive OR of Bit 0 and
the variable ‘B0’.

B0

 Build the function block “INV” to complete the operation. Show all tables and logic:

11. In Siemens’ OB1, there is a FC1 accessed that does the following:

FC1
“INV”

In_Num

Out_Num

“S3”

“X3”

“S3By” In_Byt

In_Num

Out_Num

Copy In_Num into Out_Num
except for the bits 0 to 7 which
are ‘anded’ with In_Byt

In_Byt

bits ‘anded’

Build the function “INV” to complete the operation. Show all tables and logic inside the

Function (FC):

 Ch 14 OOP 20

12. In Siemens’ OB1, there is a FC1 accessed that does the following:

FC1
“MIX”

In_Num_1

Out_Num

“S1”

“X3”

“S2” In_Num_2

In_Num_2

Out_Num

Bit_Num determines how
many bits are moved from
In_Num_1. Remaining bits are
moved from In_Num_2.
For example, if Bit_Num=7, the
number of bits moved from
In_Num_1 is 7 as shown at left.

“S3” Bit_Num

In_Num_1

Build the function “MIX” to complete the operation. Show all tables and logic inside the Function (FC1):

 Ch 14 OOP 21

Appendix 1

http://www.youtube.com/watch?v=aUILkF4aI30&feature=relmfu

Siemens SIMATIC S7-1200 Part 2 - Re-Usable Libraries

See how easy it is to implement reusable Libraries in Step 7 Basic Software eliminating time consuming

coding of repeat functions. This is part two of a four part series showcasing the time and cost saving

benefits of the new S7-1200 and its Step 7 Basic development software. For more information see:

http://www.usa.siemens.com/s7-1200

http://www.youtube.com/watch?v=L2NLcAQhiSg&feature=relmfu

Siemens SIMATIC S7-1200 Part 4 - Project-wide Cross Referencing Made Easy

See how easy it is to troubleshoot the complete Controller and HMI software project together for both

SIMATIC Basic HMI panels and S7-1200 Controllers. This is part four of a four part series showcasing the

time and cost saving benefits of the new S7-1200 and its Step 7 Basic development software. For more

information see: http://www.usa.siemens.com/s7-1200

http://www.youtube.com/watch?v=aUILkF4aI30&feature=relmfu
http://www.usa.siemens.com/s7-1200
http://www.youtube.com/watch?v=L2NLcAQhiSg&feature=relmfu
http://www.usa.siemens.com/s7-1200

 Ch 14 OOP 22

Appendix 2

The following pages are from the Siemens Text:

Programming Guideline for S7-1200/1500 Entry ID: 81318674, V1.6, 12/2018

They summarize changes and upgrades to the Siemens Portal Language from Version 14 – TIA

and later. Covered below is a review of the discussions above concerning FB’s and FC’s as well

as general organization using them. Advantages of this type of programming are discussed as

well. Speed of execution is an important part of this discussion.

“

 Ch 14 OOP 23

 Ch 14 OOP 24

 Ch 14 OOP 25

 Ch 14 OOP 26

 Ch 14 OOP 27

 Ch 14 OOP 28

 Ch 14 OOP 29

 Ch 14 OOP 30

 Ch 14 OOP 31

 Ch 14 OOP 32

 Ch 14 OOP 33

 Ch 14 OOP 34

 Ch 14 OOP 35

 Ch 14 OOP 36

 Ch 14 OOP 37

 Ch 14 OOP 38

 Ch 14 OOP 39

 Ch 14 OOP 40

 Ch 14 OOP 41

 Ch 14 OOP 42

 Ch 14 OOP 43

 Ch 14 OOP 44

 Ch 14 OOP 45

 Ch 14 OOP 46

 Ch 14 OOP 47

 Ch 14 OOP 48

 Ch 14 OOP 49

 Ch 14 OOP 50

“

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/

