

HELP EXIT

Common Course Numbering System

Your current Institution is CCCS

Searching Current Courses For Spring 2015

Course: ELT 106

Title: Fundamentals of DC/AC Long Title: Fundamentals of DC/AC

Course Introduces the basic skills needed for many careers in electronics and related fields. Covers the operations and Description: applications of basic DC and AC circuits consisting of resistors, capacitors, inductors, transformers and diodes.

Emphasizes the use of common test instruments in troubleshooting.

Min Credit: 4
Max Credit:

Origin Notes: ACC

Notes: vised credits, competencies, & outline on 6-18-14: AW

STANDARD COMPETENCIES:

- 1. Identify and practice safe work habits.
- Describe first aid for electrical shock.
- Convert between metric prefixes.
- 4. Measure voltage, current and resistance with an analog and digital multimeter.
- 5. Identify electronic components by their shape, symbols and reference designators.
- 6. Determine the value and tolerance of a color-coded resistor.
- 7. Describe the construction and applications of potentiometers.
- Apply Ohm's law.
- 9. Calculate power and energy.
- 10. Apply Kirchhoff's voltage and current laws.
- 11. Calculate voltage, current and resistance in a series resistive circuit, parallel resistive circuit and series-parallel resistive circuit.
- 12. Troubleshoot series-parallel circuits for opens and shorts.
- 13. Explain the operation of electromagnetic devices
- 14. Explain the operation of reactive devices (inductors and capacitors)
- 15. Test/troubleshoot reactive devices (inductors and capacitors)
- Describe various types of inductors and capacitors.
- 17. Describe alternating current.
- 18. Convert between RMS and peak voltage.

- 19. Convert between frequency and period, and measure frequency, period and voltage with an oscilloscope.
- 20. Construct and test circuits with resistors, inductors and capacitors.

TOPICAL OUTLINE:

- I. Introduction, Safety, Electrical Concepts
- A. PPE
- B. harmless, injurious, and lethal electrocution levels
- II. Resistance
- A. measurement
- B. calculate equivalent resistance for series, parallel, and series-parallel configurations
- III. Ohm's Law
 - A. Calculate voltage, current, and resistance values in series, parallel, series-parallel circuits
- IV. Power
- A. Calculate power given voltage, current, and/or resistance values in series, parallel, series-parallel circuits
- V. Series DC Circuits
- A. apply Kirchhoff's Voltage Law
- B. Calculate current, resistance, and power
- C. Troubleshoot opens and shorts
- VI. Parallel DC Circuits
 - A. apply Kirchhoff's Current Law
- B. Calculate current, resistance, and power
- C. Troubleshoot opens and shorts
- VII. Series-Parallel DC Circuits
 - A. simplify using series and parallel rules
 - B. apply Kirchhoff's Voltage and Current Laws
- C. Calculate current, resistance, and power
- D. Troubleshoot opens and shorts
- VIII. Troubleshooting Series and Parallel Circuits
 - A. Apply Ohm's and Kirchhoff's Laws to malfunctioning circuits
 - B. Locate circuit faults (open or short) using a digital Multimeter
- IX. Magnetism
 - A. Theory (domains)

- B. Electromagnetism (mmf, flux, field strength and density)
- X. Alternating Current and the Power Distribution System
 - A. Theory (phasor analysis)
 - B. Calculate apparent, true, and reactive power
 - C. Calculate power factor and phase shift
 - D. wye and delta power distribution systems
- XI. Inductors
 - A. DC characteristics
 - B. AC characteristics
- XII. Capacitors
 - A. DC characteristics
 - B. AC characteristics
- XIII. Pulse Waveforms, Oscilloscope and Function Generator
- $$\tt A.$$ Use function generator to create sinewave, squarewave, and triangular waveforms (voltage vs. time)
 - B. Observe voltage vs. time waveforms on oscilloscope
- C. Calculate and/or measure amplitude, period, frequency, and phase shift of sine, step, and triangle functions

Course Offered At:

RELEASE: 8.5.3

© 2015 Ellucian Company L.P. and its affiliates.