Special – Purpose Concepts Dead Time

Unit 12 & Unit 13

An Overview

Textbook #02

This program is funded in part/in whole by the U.S. Department of Labor - Employment and Training Administration. This work is licensed under a Creative Commons Attribuition 4.0 Unported License.

Unit 12 and Unit 13 – An Overview

- Unit 12 and Unit 13 of textbook #2 contain advanced topics in control systems and is heavy in advanced mathematics.
- This lecture will be an overview of several topics within these units that should be understood and can appear on the final exam.
- Please do not get overwhelmed with the math or any of the control concepts presented in the textbook. You will not be responsible for them on any exams; however, they should be read to gain awareness.
- If there are any questions, please post the question(s) in the questions discussion topic. If needed, we can also do a live online meeting to discuss any questions you might have, individually or as a group.
- Many of these topics will be addressed in future courses within the program where there are hands-on examples to teach them.

Computing Components

- Complex control systems require more complex calculation(s).
- More complex calculations require the use of a computer or Programmable Logic Controllers/Programmable Automation Controllers (PLC/PAC).

Calculations Include: Algebraic Sum/Difference

- The algebraic sum or difference of signals.
- An example: Calculating the error in the system between the set point and the process variable.

Calculations Include: Algebraic Product/Quotient

- The algebraic product or quotient of signals.
- An example: Applying proportional gain to a control loop.

$$CV = Error * K_p$$

Where: K_p is Proportional Gain

Calculations Include: Square Root

- The output signal is the square root of the input.
- An example: Square root extractors are used with flow transmitters/transducers. The equation to calculate volumetric flow rate 'Q' is related to the pressure differential measured between the high and low pressure taps of an orifice plate flow meter.

$$Q = CA_T \sqrt{\frac{2\Delta P}{\rho(1-\beta^4)}}$$

Calculations Include: Finding Highest/Lowest

- Finding the highest or lowest value.
 - An example: Some times it is necessary to capture the highest or the lowest value that a variable has reached.

- Limiting a signal to a high or low limit.
 - An example: There might be a process where the pressure can not exceed 80 psi.
 A limit can be imposed so that the pressure cannot exceed the 80 psi.

Calculations Include: Function Generator

- The output signal is a function of the input signal; a.k.a. Function Generator.
 - An example: Assume a temperature transmitter that has a range of 250°F to 800°F. The span of the transmitter is: 800°F 250°F = 550°F. The transfer function of the transmitter relates its output signal to its input signal shown in the diagram and by the equation.

$$H(s) = \frac{C_m(s)}{C(s)} = \frac{K_t}{\tau_t S + 1}$$

Where
$$K_t = transmitter\ gain$$

$$\tau_t = transmitter\ time\ contant$$

- The output signal is the solution of a first-order differential equation in which the input signal is the forcing function (step change); a.k.a. Linear Lag or First Order Lag.
- A lag is a delay in the response of a process that represents the time it takes for a process to respond completely when there is a change in the input of the process.

• First Order Lag is described by the equation:

$$\tau \frac{dc}{dt} + c = Kr$$

Where c = output, r = input, K = gain, $\tau = time\ constant$

$$\begin{array}{c|c} r \\ \hline \\ \hline \\ 1 + \tau p \end{array} \qquad \begin{array}{c} c \\ \hline \end{array}$$

where p is the Heaviside operator $\frac{d}{dt}$

- What is a Heaviside operator?
- A Heaviside operator is Calculus.

 Don't worry...if you never had calculus, you will not have to do any. However, you should know that there is a lot of calculus in process control and you should understand what some of the terms mean.

- First Order Lag and the Heaviside Operator.
- The Heaviside Operator d/dt is a calculus term called a derivative.
- In process control, when a loop is tuned using Proportional Integral Derivative (PID), the derivative term is also referred to as, rate.
- Derivative (Rate) is nothing more than the rate of change of a process signal with respect to time, d/dt. Where t is time.

Calculations Include: Derivative Function

Calculations Include: Integral Function

- An output or input signal that is the time integral of the other, a.k.a. integrator (Integral) or totalizer.
- Integral is another calculus term and is the 'I' term in a PID control loop.
- The integral portion is used to change the output of a process by an amount proportional to an error over time. It can be represented mathematically by:

$$E + \frac{1}{T_i} \int_0^t E dt$$

Where E is the error, T_i is time and $\int_0^t Edt \text{ is an integral of error over time}$

Calculations Include: Integral Function

Calculations Include: Lead-Lag Control

 Lead-Lag is an advanced topic control method that will be addressed in another course. The output of this type of control system is defined using a differential equation:

$$output = K\left(\frac{1+\tau_1 p}{1+\tau_2 p}\right) input$$

Where:
$$K = Gain$$
, $\tau_1 = Lead$ time constant, $\tau_2 = Lag$ time constant, $p = \frac{d}{dt}$

Ratio Control

Ratio Control

A control strategy used to control a secondary flow to the predetermined fraction, or flow ratio, of a primary flow.

Other Control Systems (Advanced Topics)

- Override Control
- Selective Control
- Duplex or Split-Range Control
- Auto-Selector or Cutback Control

Unit 13 – Dead Time Control

- Please read through Unit 13 so that you are familiar with the terminology.
- It is an advanced control concept and can be defined in several ways and have many applications.
- For the most part, Dead Time is:
 - The amount of time between a change in input and the start of the resulting response to that input.
 - It is a definite delay that is deliberately placed between two related actions to avoid overlap that could permit a particular event to take place before it should.