P&IDs and Symbols

A Primer for Students who have not taken EMEC125

EMEC130

This program is funded in part/in whole by the U.S. Department of Labor - Employment and Training Administration. This work is licensed under a Creative Commons Attribution 4.0 Unported License.
P&ID – Widely Understood?

• P&ID is an acronym that is well understood to be the document used to define a process.

• Definition:
 • “A schematic diagram of the relationship between instruments, controllers, piping, and system equipment.” (Kirk, Weedon, & Kirk, 2014, p. 23)

• P&IDs are a symbol based schematic language that once understood, adds simplicity to the information being presented.

• They can also be confusing when a unique symbol appears.

• There is no real standard for what should be included on the drawing.
P&ID Acronym

• What does P&ID stand for?
• The letter meanings are not universal.
• ‘P’ could stand for “Piping” or it could stand for “Process”.
• ‘I’ could represent “Instrumentation” or represent “Instrument”.
• ‘D’ could mean “Drawing” or it could mean “Diagram”.
• Which ever is used, including those not listed, we are all talking about the same document(s).
New ISA Standard – ISA-5.7 *(Not Yet Released)*

- As mentioned, “there is no universal, national, international or international multi-discipline standard that covers the development and content of P&IDs” (Meier & Meier, 2011, p. 27)
- The ISA is in the process of creating a standard that will be known as: ISA-5.7 and is based on the Process Industries Practice (PIP) PIC 001.
- There is a standard that governs the symbols used on P&IDs. This standard is ANSI/ISA-5.1-2009 Instrument Symbols and Identifications. (See the introduction to this course)
What Comes From P&IDs?

• Instrument Lists or Index
 • Documents specifications, acquisition and installation

• Motor Lists
 • Size, horsepower, voltage

• Piping
 • Line lists, sizes, service and purpose

• Tanks & Vessels
 • Information about tanks and vessels

• All this information is used to lay out equipment, start specifying and purchasing the necessary equipment.
Control Loop

• A collection of equipment consisting of at least three devices used to automatically control a process or a part of a process

• The three most common devices is:
 • A transmitter used to sense the PV and transmit the measured value to a controller
 • A controller used to compare the PV with a setpoint and generate a signal based on that comparison
 • A final control element that corrects the process
ANSI/ISA-5.1

• As stated earlier, the ANSI/ISA-5.1 is most often used by designers as the standard for symbology. Following is a direct quote from the standard:

“The symbols and identification methods contained in this standard have evolved by the consensus method and are intended for wide application throughout all industries. The symbols and designations are used as conceptualizing aids, as design tools, as teaching devices, and as a concise and specific means of communication in all types and kinds of technical, engineering, procurement, construction, and maintenance documents and not just in Piping and Instrumentation Diagrams.” (International Society of Automation, 2009)
Identification Letters

• The ANSI/ISA-5.1-2009 Instrumentation Symbols and Identification standard lists the preferred First Letter and Succeeding Letters.
• The standard also lists typical letter combinations.
• Keep these lists handy when reading or creating P&ID’s.
Table 4.1 — Identification letters

Note: Numbers in parentheses refer to the preceding explanatory notes in Clause 4.2.

<table>
<thead>
<tr>
<th>First letters</th>
<th>Succeeding letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column 1</td>
<td>Column 2</td>
</tr>
<tr>
<td>Measured/Initiating Variable</td>
<td>Variable Modifier (10)</td>
</tr>
<tr>
<td>A</td>
<td>Analysis (2)(3)(4)</td>
</tr>
<tr>
<td>C</td>
<td>User's Choice (3a)(5)</td>
</tr>
<tr>
<td>D</td>
<td>User’s Choice (3a)(5)</td>
</tr>
<tr>
<td>E</td>
<td>Voltage (2)</td>
</tr>
<tr>
<td>F</td>
<td>Flow, Flow Rate (2)</td>
</tr>
<tr>
<td>G</td>
<td>User's Choice</td>
</tr>
<tr>
<td>H</td>
<td>Hand (2)</td>
</tr>
<tr>
<td>I</td>
<td>Current (2)</td>
</tr>
</tbody>
</table>
Instrument Identification (Tag Numbers)

• All instruments should have a metal, plastic or paper tag attached to them that states an instrument identification number; known as a “Tag Number”.

• There are several numbering schemes; however, the ISA standard, ISA-RP-5.1 (1949) superseded by ANSI/ISA-5.1-1984 (R 1992) superseded by ANSI/ISA-5.1-2009 is the most common.

• Tag numbers are an alpha-numeric code where the:
 • Alpha portion should be no more than four upper case characters
 • Numeric portion should be know more than four digits.

• The smaller the tag number, the better.
Typical Instrument Tag Number

• PDT 102 – Instrument Identification or Tag Number
 • PDT – Function Identification
 • P 102 – Loop Identification
 • 102 – Loop Number
 • P – First Letter
 • DT – Succeeding Letters

• The most common identifiers are used for the most common process variables in process control:
 • F – Flow
 • L – Level
 • P – Pressure
 • T - Temperature

Note: Hyphens are optional as separators
The Letter ‘X’ as a First Letter

• The letter ‘X’ as a first letter in a special case.

• The ANSI/ISA-5.1-2009 Standard states:
 • “First-Letter or Succeeding-Letter for unclassified devices or functions (X), for non-repetitive meanings that shall be defined outside tagging bubbles or by a note in the document.” (International Society of Automation, 2009)

• A legend sheet and descriptive letters next to the bubble should define the function letter ‘X’.

• Proper use is to not use the letter ‘X’ frequently and when used should only be used once, or at least in a limited capacity.
Symbology – Building Blocks

• Circles (Bubbles)
• Squares & Rectangles
• Triangles
• Half Circles
• Lines
Instrument Location Information

• ISA standard instrument symbols, location and accessibility
• Symbols are used to help identify the type of:
 • Instrument
 • Location
 • Located in the field
 • Not panel, console or cabinet mounted
 • Visible at the field location
 • Accessible to the operator
 • Located in or on front of central or main console or panel
 • Visible on front panel
 • Location at rear of main or central panel
 • Not accessible to the operator
Instrumentation Devices or Function Symbols

Field Mounted

- Discrete Instruments
- Computer Systems And Software
- Alternate Choice Or Safety Instrumented System
- Primary Choice Or Basic Process Control System
Instrumentation Devices or Function Symbols

Normally Accessible to Operator

- Discrete Instruments
- Computer Systems And Software
- Alternate Choice Or Safety Instrumented System
- Primary Choice Or Basic Process Control System
Instrumentation Devices and Function Symbols

Normally inaccessible to the operator or behind-the-panel devices or functions

- Discrete Instruments
- Computer Systems And Software
- Alternate Choice Or Safety Instrumented System
- Primary Choice Or Basic Process Control System
Instrumentation Devices and Function Symbols

Auxiliary location normally accessible to the operator

- Discrete Instruments
- Computer Systems And Software
- Alternate Choice Or Safety Instrumented System
- Primary Choice Or Basic Process Control System
Instrumentation Devices and Function Symbols

Normally inaccessible to the operator or behind-the-panel devices or functions

Discrete Instruments

Computer Systems And Software

Alternate Choice Or Safety Instrumented System

Primary Choice Or Basic Process Control System
Instrumentation Devices and Function Symbols

- Instrument With Long Tag Number
- Instruments Sharing Common Housing *
- Purge or Flush Device **
- Rest for Latch-Type Actuator **

* It is not mandatory to show a common housing
** These diamonds are approximately half the size of the larger ones
Instrumentation Devices and Function Symbols

- Undefined Interlock Logic
- Panel Mounted Patchboard Point 12
- Diaphragm Seal
- Pilot Light

*** For specific logic symbols, see ANSI/ISA Standard S5.2
Instrument Line Symbols

Instrument Supply
Or Connection to Process

Undefined Signal

Pneumatic Signal

Electrical Signal
- - - - - - - OR

Hydraulic Signal
Electromagnetic phenomena include heat, radio waves, nuclear radiation, and light.
Instrument Line Symbols

Mechanical Link

Optional Binary (ON – OFF) Symbols

Pneumatic Binary Signal

Electric Binary Signal

OR
Final Control Elements - Valves

- Generic Two-way
- Straight globe
- Gate

- Generic Two-way
- Straight globe
- Gate

- Ball Valve

- Screw-down

- Generic 2-Way

- Powered

- Generic Two-Way Angle

- Generic 3-Way

- Generic 4-Way
Final Control Elements - Valves

- Backpressure regulator, Internal pressure tap
- Pressure-reducing regulator, Internal pressure tap
- Backpressure regulator, External pressure tap
- Pressure-reducing regulator, External pressure tap
- Generic pressure safety valve, Pressure relief valve
Primary Flow Measurement - Flowmeters

- Standard Pitot Tube
- Turbine, Propeller
- Vortex Shedding
- Magnetic 01
- Magnetic 02
- Positive Displacement
- Variable Area
Differential Pressure - Flowmeters

Single connection. The CT = Corner Tap, PT = Pipe Tap, VC = Vena Contracta Taps. These three are not very common.

Double connections to the process. PT = Pipe Tap, VC = Vena Contracta Taps.

http://www.pipingguide.net/2009/06/types-of-pressure-taps.html
Pneumatic Control Loop

Pressure Transmitter

PT 103

Control Valve

Pressure Valve

Fail Open (FO)

Pneumatic Controller

PIC 103

Control Loop 103 – Pressure Control Loop
Valve Failures

• Valves can fail in various positions
 • Fail Open (FO)
 • Fail Closed (FC)
 • Fail Locked (FL)
 • Fail in Last Position, Drift Open (FL/DO)
 • Fail in Last Position, Drift Closed (FL/DC)

• Valves are shown on a P&ID by a shape that resembles a bow tie

• Actuators are shown with a line from the bow tie junction to a shape such as a half circle, a square, a horizontal line, etc. (More on valve symbols later in the chapter.

• The next slide shows symbols for valve failures
Valve Failures - Symbols

<table>
<thead>
<tr>
<th>Method A</th>
<th>Method B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail to open position</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail to closed position</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Failed to last position</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail to last position, Drift open</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail to last position, Drift closed</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

1. Users engineering a design standards, practices, and/or guidelines shall document which symbols have been selected.

2. The symbols are applicable to all types of control valves and actuators.

From: ANSI/ISA-5.1-2009 page 34
Electronic Control Loop

Electronic Flow Transmitter

Flow Element
Orifice Plate

Transducer

Electronic Controller

Control Loop 205 – Electronic Flow Loop