9.1 Real Numbers and Evaluating Radicals

Integers -

Rational Numbers -

Irrational Numbers -

Definition:

- The principal square root of a nonnegative number a, written as $\sqrt[2]{a}=\mathrm{b}$ or $\sqrt{a}=\mathrm{b}$ is the positive number \boldsymbol{b} such that $b^{2}=a$.
- Ex. $\sqrt{25}=5$ and $5^{2}=25$
- The square root of a negative number is not a real number.

$$
\sqrt{-25} \neq 5 \times 5 \text { or }-5 \times-5
$$

Example

1) $\sqrt{169}$
2) $-\sqrt{121}$
3) $\sqrt{-4}$
4) $\sqrt{\frac{1}{4}}$
*For higher roots: still use the radical sign but must include an index to show which root is wanted
1. $\sqrt[3]{27}=\ldots$ can $\sqrt[3]{-27}$ be found?
2. When is it possible to find the $\mathrm{n}^{\text {th }}$ root of a negative number?

Example

1) $\sqrt[3]{216}$
2) $\sqrt[3]{-125}$
3) $-\sqrt[3]{-64}$

- What happens when we try to take the square root of 7 ?
- Since 7 is not a perfect square we say that it is an \qquad number and we approximate the square root.
- Use the calculator to approximate to 2 decimal places

Do the following on your calculator and round to 3 decimal places
3. $\sqrt{75}$
4. $-\sqrt{18}$
5. $\sqrt{32}$
6. $\sqrt[3]{36}$
7. $\sqrt[4]{64}$
8. $3-\sqrt{8}$
9. $2+\sqrt{5}$
4
10. $-6+\sqrt{3}$
7

Use the definition of square root to find the square of each radical expression.
11. $\sqrt{15}$
12. $\sqrt{7}$
13. $-\sqrt{23}$

This document is 100% funded by the MoSTEMWINs $\$ 19.7$ million grant from the U.S. Department of Labor, Employment and Training Administration (TAACCCT). The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

