The Meaning of Slope
A carpenter is given a set of house plans that call for a 5:12 roof (or a roof with a pitch of 5:12). This means that the roof must be constructed so that for every 5 inches of rise (vertical distance), there are 12 inches of run (horizontal distance). That is the ratio of rise to run is $\frac{5}{12}$.

Slope Formula
Slope $(m)=\frac{\text { vertical change }(\text { rise })}{\text { horizontal change }(\text { run })}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ where $x_{2}-x_{1} \neq 0$

The slope of a line tells us
1)
2)

Positive slope -

Slope is positive if the line goes \qquad

- 2 positive directions or
- 2 negative directions

Negative slope -
Slope is negative if the line goes \qquad

- One positive direction and one negative direction

Example: Find the slope of the line through each pair of points.
a) points $(3,2)$ and $(-9,6)$
b) points ($-2,-2$) and ($-4,2$)

Example: Find the slope of the line.

Graph a line with pt $(3,-1)$ and slope $\frac{1}{3}$

Graph a line with pt

Finding Intercepts

y-intercept - where the line crosses the \qquad and $x=$ \qquad
x-intercept - where the line crosses the \qquad and $y=$ \qquad

Example: Find the x and y intercepts of the following.
a) $-2 x+4 y=16$
b) $5 x-y=10$

$$
\begin{aligned}
& x \operatorname{int}(, \quad) \\
& y \operatorname{int}(, ~)
\end{aligned}
$$

$x \operatorname{int}($,
$y \operatorname{int}($,

Example: Solve the following equations for y.
a) $9 x-3 y=15$
b) $-8 x+2 y=-20$

We refer to equations with x and/or y to the first degree as linear equations.

- $y=m x+b$ (slope intercept form)
- $A x+B y=C$ (standard form)
- $y-y_{1}=m\left(x-x_{1}\right)$ (point-slope form)

Examples of non-linear equations:
$y=x^{2}$
$y=x^{3}$
$y=|x|$

$$
y=\sqrt{x}
$$

Slope-Intercept Form

$$
y=m x+b
$$

Where m is the slope of the line and b is the y-intercept.

* The easiest way to graph a line in slope-intercept form is to first graph the
\qquad then use the \qquad to find two other points on the line.
a) Graph $y=\frac{3}{4} x+2$.
b) Graph $y=-\frac{1}{3} x-2$
$m=$
$b=$
$m=$
$b=$

a) Find the equation of a line with a slope of -4 and a point $(0,9)$

b) Find the equation of a line with the slope of $\frac{2}{3}$ and passing through ($0,-4$).

* One way to graph a line in standard form is to find the \qquad \& \qquad .
a) Graph $-2 x+4 y=-8$

$$
x-\operatorname{int}(,)
$$

b) Graph $5 x-6 y=30$

$$
x \text {-int (,) }
$$

$$
y-\operatorname{int}(, ~)
$$

$$
y-\operatorname{int}(,)
$$

*When the x and y intercept are the point $(0,0)$ then choose any other x value as an independent variable, calculate y, and plot the $2 n d$ point.
c) Graph $-6 x+2 y=0$
d) Graph $5 x-4 y=10$

* You can also graph an equation in standard form by transforming it into
a) Graph $-10 x+2 y=-6$
b) Graph $-6 x+3 y=12$

* The easiest way to graph a line in point-slope form is to first graph the
\qquad then use the \qquad to find two other points.
a) Graph $y-2=-3(x+4)$

$$
\begin{aligned}
& \text { pt (,) } \\
& m=
\end{aligned}
$$

b) Graph $y+3=\frac{1}{4}(x-2)$

Writing Equations of Lines

a) Write an equation in point-slope form of the line through point $(2,-4)$ with slope -1 .
c) Write an equation in slopeintercept form that contains the points $(5,0)$ and $(7,-3)$

$m=$
a) Write the equations for the horizontal and vertical lines that contain the point $(5,-1)$.
horizontal
vertical
b) Write an equation in point-slope form of the line with slope -8 through point $(3,-6)$
d) Write an equation in slopeintercept form that contains the points $(4,-9)$ and $(-1,1)$

Vertical Line

$m=$
b) Write the equations for the horizontal and vertical lines that contain the point $(-7,-5)$.
horizontal
vertical

This document is 100% funded by the MoSTEMWINs $\$ 19.7$ million grant from the U.S. Department of Labor, Employment and Training Administration (TAACCCT). The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.
(C)

This MoWINs product was created by North Central Missouri College and is licensed under the Creative Commons Attribution 4.0 International License

