

JANUARY 12, 2017

INPUTTING DATA
TOPIC 6

VINCENT A. DINOTO, R.
JEFFERSON COMMUNITY AND TECHNICAL COLLEGE

Vince.dinoto@kctcs.edu

mailto:Vince.dinoto@kctcs.edu

INPUTTING DATA VINCENT A. DINOTO, R.

Contents
Introduction .. 3

Why Create a Tool ... 3

Functions to be Covered ... 3

Examples ... 4

Example 1 .. 4

Example 2 .. 4

My Toolboxes .. 4

GetParameterAsText ... 5

Problem ... 6

Creating a Script .. 6

Adding the Script ... 8

Editing and Correcting Errors .. 10

Assignment 6.1 .. 10

Pa
ge

1

INPUTTING DATA VINCENT A. DINOTO, R.

Figures
Figure 1: My Toolbox 5

Figure 2: Storage script ... 7

Figure 3: Script Wizard Screen 1 .. 8

Figure 4: Script Wizard Screen 2 (note only part of the screen shown) ... 9

Figure 5: Data Types (note only part of the wizard is visible) ... 9

Pa
ge

2

https://kctcs.sharepoint.com/sites/ts/JeffersonTechnologyCenter/Shared%20Documents/GIS260/module%206%20v2.docx#_Toc471991084
https://kctcs.sharepoint.com/sites/ts/JeffersonTechnologyCenter/Shared%20Documents/GIS260/module%206%20v2.docx#_Toc471991085
https://kctcs.sharepoint.com/sites/ts/JeffersonTechnologyCenter/Shared%20Documents/GIS260/module%206%20v2.docx#_Toc471991086
https://kctcs.sharepoint.com/sites/ts/JeffersonTechnologyCenter/Shared%20Documents/GIS260/module%206%20v2.docx#_Toc471991087
https://kctcs.sharepoint.com/sites/ts/JeffersonTechnologyCenter/Shared%20Documents/GIS260/module%206%20v2.docx#_Toc471991088

INPUTTING DATA VINCENT A. DINOTO, R.

Introduction
The Toolbox is one of the main ways in which geoprocessing is created within Esri ArcMap
Desktop. To this point, tools from existing toolboxes have been employed with Python scripts to
do specific tasks. Multiple geoprocessing tools can be used in a single script, but the inputs were
provided within the script not queried from the user, thus the script had to be modified each time
new data was used. Typically, when a tool is used in geoprocessing in Esri ArcMap the user
specifies the input, output and other parameters.

1. The format used: arcpy.toolname_toolbox (input, output, etc.)
2. The input, output, etc. could be a variable of direct information.

In this module, tools for specific tasks will be created based on existing geoprocessing tools and
placed within a user toolbox. The script will not create a new geoprocessing function but instead
will call one or more existing tools to be used for a particular purpose. For example, if you
constantly clip and merge items for an operation, a tool could be created that does this process.
The actual creation of a new geoprocessing tool is beyond the scope of this course.

Creating a tool for a personal toolbox will utilize a construction wizard. The process could be
directly coded but this is generally beyond the context of this course.

Why Create a Tool
Any user of Esri ArcMap knows that it contains many tools and most are never used for typical
operations, so why should the user create personalized tools?

• Many times a user will do similar operations as part of their daily routine, which involves
multiple clicks of the mouse, this routine does not have any variation accept potentially
the input and output parameters.

• Many redundant processes could be automated, for example if the process is a set of clips
after a merge, there is no reason to navigate manually through the tool menus to complete
this process, a single tool could do the processes for the user. See the case study at the
end of module 4.

• It is very important that proper file naming convention and storage locations be followed
to allow for maximum automation.

• As with any Python, script the purpose is to make the technologist more productive and
allow for informed decisions, and not be burdened by redundant processes. These
processes are time consuming and requires little to no expertise in the process. To design
the tool does take extensive thought.

Functions to be Covered
• ToolBox scripting wizard
• GetParameterAsText
• ListFeatureClasses
• Arcpy.describe
• Copy Features

Pa
ge

3

INPUTTING DATA VINCENT A. DINOTO, R.

Examples
Example 1:
At the National Geospatial Technology Center of Excellence (GeoTech Center), demographical
research requires that specific datasets and geographical shapefiles be joined together for
different communities.

• The datasets are always the same type of information, such as median income,
educational attainment, race and gender. The feature files are census tract information,
but the files represent different regions across the country. In the operation the following
are manually done:

o Creation of a new column (field) with a specific data type
o The new field must be populated with data from a different field (this is done to

change the format between the two columns, one was numerical and the other is
text).

o A tabular join is completed between the spatial file and the spreadsheet that
contains demographic information.

• Each time this operation is done manually, the steps are identical.
• The input files and output files contain different information, but the same topics.

Example 2
The GeoTech Center creates regional geographies for two-year colleges.

• Shapefiles are merged together to create the regional boundary, this is usually done both
for county boundaries and census tracts.

• The newly created boundaries are used to clip data from state level datasets like roads
and rivers.

• The merging and clipping are the same each time, different counties and states are used,
thus the input names and the output names vary.

My Toolboxes
As noted previously, new tools are not being created, but instead the combination of different
tools are being created to meet the needs of specific repetitive processes. In previous modules,
tools have been used to automate processes, but there were no parameters created for input of
information by the user, thus the code had to be modified for each application.

The tool creation will be performed through the use of a wizard and not require extensive Python
script composition and is referred to as a My Toolbox. An example of a tool that is a python
script is the multiple ring buffer, which is a python tool that calls the buffer command numerous
times and uses a looping function.

.

Pa
ge

4

INPUTTING DATA VINCENT A. DINOTO, R.

Figure 1: My Toolbox

• Open Esri ArcCatalog and locate the Toolboxes section, see Figure 1.
• Right click on My Toolboxes, select New then Toolbox, and provide an appropriate

name. In our example, Test was the name chosen. Do not select the Python Toolbox, but
just Toolbox.

o My Toolboxes use an extension of .tbx
o Python Toolboxes use an extensions of .pyt

• This process has created a blank toolbox, which contains no tools.

To add a script to the toolbox, the toolbox can initially have a blank script or a script can be
composed before creating the toolbox. To create a blank script file:

• open your IDE with an empty file
• save the blank file
• this will create a blank script file

There are multiple ways to create your script file but it is recommended that you use an IDE,
which will be the process demonstrated. Once the script file has been created in the IDE it will
be added to the tool. The script file is added to the tool by using the add script wizard in
ArcCatalog. Once the script is tested, edits can be made in the IDE or any other text editor such
as Notepad. The tool will only run successfully within ArcMap or ArcCatalog and will not be
fully functional in the IDE. Since the script will run inside ArcMap or ArcCatalog loading the
arcpy module is not required.

GetParameterAsText
The GetParameterAsText is the arcpy command that will be used and it will create a dialog box
that will allow the user to input information. The utilization of this tool is a two-step process:

1. Creating the code for the script
2. Setting the input parameters, done in the Add Script Wizard

The GetParameterAsText has a single attribute, which is an index; the index will be zero
for the first input box. The index will be incremented with each additional use of the
command, i.e. additional input boxes. The format of the function is:

Variable = arcpy.GetParameterAsText(index)

Pa
ge

5

INPUTTING DATA VINCENT A. DINOTO, R.

Problem
In earlier versions of ArcMap, most files were stored as individual shapefiles and used the
Microsoft Windows Tree Structure to separate geographic regions; today it is strongly
recommended that mapping data (feature class files) be stored within a geodatabase. This
change in how information is stored has required organizations to move shapefiles into
geodatabases. The script that will be composed will complete this task in an automated process.
This discussion of geodatabases will not include relational databases but only file and personal
geodatabases. It is assumed that the geodatabase has already been created prior to working on
this lesson, if it has not been created, create an empty geodatabase. Make sure that none of the
shapefiles to be placed in the geodatabase already exists in it; this will cause an error or will
create a file with a different name. This occurs since there are no commands in the script
provided for overwrite existing files.

• For example, while creating the script, it is run and thus the part of the scripting putting
the feature class file into geodatabase is executed, therefore the geodatabase is no longer
empty and will contain a file, when the script is run again a conflict will arise. The user
needs to use ArcCatalog and manually delete the file from the geodatabase. If the file is
not removed, the script will create a file with a generic name or a number after the
provided name, thus each time the script is tested another file will be created which will
clutter the geodatabase with useless information.

• For this example make sure all the shapefiles to be moved to the geodatabase are placed
in the same file folder, remember shapefiles are composed of multiple individual files and
all must be placed appropriately in the same folder. The script that will be created will
move all files from a single folder.

In all examples of Python scripts created to this point, the user defined the environment, which
stated the location of the data and the storage location of the information. The user had no
control over these parameters when the script was executed. In toolbox construction, the user
will input these parameters.

The user will specify the input folder that will contain the shapefile(s). The user will also specify
the geodatabase that the geospatial files will be stored in. As noted previously it is assumed that
the geodatabase has already been created before running the script.

Creating a Script
In Figure 2 the script is shown moving the shapefiles to the geodatabase; it was created in an IDE
but not executed.
Pa

ge
6

INPUTTING DATA VINCENT A. DINOTO, R.

1. Loading arcpy (came from the author’s starting template) is not required but will not

damage the process.
2. The OS is the operating system and is required to make this script function properly.
3. The environment is loaded from arcpy. The environment will be used in context with the

GetParameterAsText command.
4. In the next line of code, the workspace will be set to the value inputted by the user in the

first GetParameterAsText with an index of 0, this is the location of the shapefile folder.
5. The next functional line again uses the GetParameterAsText with a 1 index, which will

be the user supplied output location; this is the location of the geodatabase.
6. The ListFeatureClasses will copy all the shapefiles that are saved in the specified

workspace. No parameters are required with this command, so the variable shapefile
contains all the content from a specified file folder.

7. A for loop is used to write each shapefile to the geodatabase. Each iteration of the loop
will write one shapefile and the associated information to the geodatabase. The variable
shape will contain the information to be written. The command Describe and
CopyFeatures are used. The Describe command returns the properties of the file
contained in shape. The CopyFeatures command has multiple parameters. The first
parameter is the input feature, which is contained in the file, named shape, the second
parameter is the output location and the last parameter is the name and properties of the
file.

Once the script is written the next step will be to use the script in the tool wizard.

Figure 2: Storage Script

Pa
ge

7

INPUTTING DATA VINCENT A. DINOTO, R.

Adding the Script
Normally when a script is constructed, it is run in the IDE and edited until the script runs
properly without errors and that is the end of the process. For this case running the script is
possible within the IDE, but may not be functional since it requires the use of the toolbox wizard.
If instead the script was the creation of a Python
toolbox, which requires more programing, then it
might fully execute. That type of script requires
more Python scripting knowledge than is covered in
this course. The next step in the construction
process will be using the tool wizard to load the
script properly, see Figure 3.

1. The first step is opening ArcCatalog and
right clicking on your Toolbox.

2. Click Add and the Script Wizard should
open.

3. In the Name field select an appropriate
name with no spaces or other special
characters.

4. The Label field is the visible name of the
script and can be more descriptive by using
spaces and special characters. This name
will be the name seen in the toolbox.

5. Click on the Next button to continue the
wizard. Figure 3: Script Wizard Screen 1

Pa
ge

8

INPUTTING DATA VINCENT A. DINOTO, R.

6. The next step is providing the
pathway to the script file
which was written in the IDE.
See Figure 4

7. Use the browse folder button
to locate the script file.

8. Click on next at the bottom of
the wizard screen.

9. In the next window (Figure 5)
of the script wizard, there will
be a need for an alignment of the GetParameterAsText with the data input from the
user. This is the critical point in the process and must be done carefully to insure that the
proper parameters are inputted into the tool.

10. Each row must have a one to one
correspondence with each input
that is designed in the script.

11. The display name in Figure 5 is
the name, which will appear in
the tool, the designer must select
an appropriate name. The author
has chosen two names to be used
in the tool.

12. The data type must be set
properly to insure accurate
functionality. For the Input
Data, Disk Connection was
selected from a pull down menu.
This data type gives the user the
ability to specify a folder that
will contain the shapefiles. The
Output GDB has a Data Type of
Workspace or Feature Dataset.
This data type was selected to
allow for browse button usage.
The user will be able to input the information in a specified geodatabase.

13. When a row is highlighted the Parameter Properties will be shown for that specific row
and other parameters that can be controlled. In both cases the default values were used.

14. The number of rows must be in agreement with the number of GetParameterAsText in
the script. The index value will correspond to each input so the zero parameter is the
Input Data and the one parameter is the Output GDB.

15. Click next to continue.

Figure 4: Script Wizard Screen 2 (note only part of the screen shown)

Figure 5: Data Types (note only part of the wizard is visible)

Pa
ge

9

INPUTTING DATA VINCENT A. DINOTO, R.

Editing and Correcting Errors
Once the script has been created in the wizard, it can be edited. To edit the script right click on it
and select edit. This will open the script in a text editor, generally Notepad. The script can also
be edited using an IDE, but not directly. If the learner right clicks on the script and selects
properties, those properties implemented in the wizard can be edited. Once the editing has been
completed, it is important to make sure that no files were created. If files were created, they must
be manually deleted, since they can cause potential errors when the script is run again.

Once the editing is completed and any files created, the script can be run again. When the script
tool is run, it should provide an input box, in which the user will locate the input folder; this is
done through the use of the browse button. Next the storage location should be specified and
again can be located using the browse button. When the script has completed the operation, the
new shapefiles should be located in the geodatabase. There should be a one to one
correspondence to the old older shapefiles. It is important that none of the shapefiles used in the
process be opened in ArcMap when the script is run, this can create a lock on the shapefile and
thus the operation will not function properly.

Assignment 6.1
A geodatabase containing five counties from the same state of
the same type, i.e. such as census tract boundaries. These are
the only files contained in the geodatabase. In this operation
the five counties will be merged together to form a single file
regional geography. In addition, the created regional
geography will be used to clip a river and a railroad files at a statewide geography. The resulting
merged counties and the clipped files will be saved back to the same geodatabase.

The river and railroad files should be in the same file folder and contain no additional
information. Make sure the files use appropriate naming convention such as:
KY_Region_Louisville_Railroads.

Create a single tool that produces the clipping and merging. The tool will have two or three
different inputs. One for the geodatabase, one for the river and railroad file folder and potential
the output location. The required information for your instructor should include the script, the
screen image of the input window, the contents of the geodatabase and output maps of the
results.

 Pa
ge

10

INPUTTING DATA VINCENT A. DINOTO, R.

JCTC_CIT 299_Module 2_Topic 6_Inputting_Data by Vincent A. DiNoto, Jr. is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This workforce product was funded by a grant awarded by the U.S. Department of Labor’s Employment and Training
Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S.
Department of Labor. The U.S. Department of Labor makes no guarantees, warranties, or assurances of any kind,
express or implied, with respect to such information, including any information on linked sites and including, but not
limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or
ownership. This is an equal opportunity program. Assistive technologies are available upon request and include
Voice/TTY (771 or 800-947-6644).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Introduction
	Why Create a Tool
	Functions to be Covered
	Examples

	My Toolboxes
	GetParameterAsText
	Problem
	Creating a Script
	Adding the Script
	Editing and Correcting Errors

	Assignment 6.1

