Adult Learning Academy Elementary Algebra Workbook

Module 5: Integer Exponents \& Laws, Scientific Notation, Polynomials \& Operations

Learning Objectives

By the time you finish this module, you should be able to:
\square Simplify expressions involving positive or negative exponents according to the exponent rulesConvert a number in standard notation into scientific notationConvert a number in scientific notation into standard notationIdentify a monomial, binomial, trinomial, and polynomialSort polynomials according to their degreeAdd, subtract, and multiply polynomials of any sizeDivide a polynomial by a monomial

IMPORTANT INFORMATION FROM MODULE 5:

$x^{m} \cdot x^{n}=x^{m+n}$
$\left(x^{m}\right)^{n}=x^{m n} \quad$ "when you raise a power to a power, mutiply the powers"
$\frac{x^{m}}{x^{n}}=x^{m-n}$
$x^{0}=1,0^{m}=0,0^{0}$ is undefined
$\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}} \quad x^{-m}=\frac{1}{x^{m}} \quad$ A negative exponent does NOT make a number negative!
one term: monomial; two terms: binomial; three terms: trinomial
To find the degree of a single term, add all the exponents on all the variables in that term. To find the degree of a polynomial, have a contest: the term with the highest degree wins!

FOIL: for multiplying a binomial times a binomial (also for squaring a binomial!!)
$(a+b)^{2}=a^{2}+2 a b+b^{2} \quad(a-b)^{2}=a^{2}-2 a b+b^{2} \quad(a+b)(a-b)=a^{2}-b^{2}$
Birthday Song: You must have like terms, you must have like terms to ADD or SUBTRACT, you must have like terms!

When you subtract a polynomial, be sure to subtract EVERY term!!

St. Louis Community College

Adult Learning Academy
Elementary Algebra Workbook
Module 5 Video \& ExERCISE LIST

Topic	Website	Videos	Exercises
Exponents	www.khanacademy.org	Level 1 Exponents	Positive and Zero Exp
		Understanding Exponents 2	Negative Exponents
		Understanding Exponents	Exponent Rules
		Level 2 Exponents (negative exp)	
		Exponent Rules Part 1	
		Exponent Rules Part 2	
		Exponent Prop involving Quotients	
	www.stlcc.edu	Exponent Rules ppt on Blackboard	
	http://www.youtube.com/watch?v=h063AzwjGlc	Mathman: 3 Exponent Mistakes	
Scientific Notation	www.khanacademy.org	Scientific Notation	Scientific Notation
		Scientific Notation 1	
Polynomials	http://www.youtube.com/watch?v=D-3NIysYshM	Diff betw Trinom, Bi, Monomial	
	http://www.youtube.com/watch?v=l_kY3sHViSA	Identifying Degree, Name of Polyn.	
	www.khanacademy.org	Tems Coefficients and Exponents	
		Evaluating a Polynomial at a Given V	
		Simplify a Polynomial	
Add, Subt. Polynom.	www.khanacademy.org	Adding Polynomials	Adding, Sub Polynom.
		Ex: Adding Polynomials w/Mult Var.	
		Add \& Subt of Polynomials	
		Adding and Sub Polynomials 1	
		Adding \& Subt Polynomials 2	
		Adding and Sub Polynomials 3	
		Subtracting Polynomials	
		Sub Polynomials w/ Mult Variables	

Topic	Website	Videos	Exercises
Multiplying Polynom.	www.khanacademy.org	Multiplying Monomials	Multip. Express. 0.5
		Multiplying Monomials by Polynom.	Multiplying Exp. 1
		Multiplying Binomials	Multiplying Polynom.
		Multiplying Polynomials1	
	Multiplication of Polynomials		
	Square a Binomial		
		Special Products of Binomials	
		Special Polynomials Products 1	
Dividing Polynomials	www.khanacademy.org	Special Products of Polynomials 1	
		Special Products of Polynomials 2	
Module 5 Test Review	www.stlcc.edu	Multiplying Polynomials	
		Polynomial Divided by Monomial	
		Dividing Multivariable Poly. w/ Mono	
		Blackboard PowerPoint	
			Exponent Rules
			Module 5 Review Flashcards

MoSTEMWINs
This product is 100% funded by the MoSTEMWINs $\$ 19.7$ million grant from the U.S. Department of Labor Employment and Training Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

Unless otherwise noted this MoSTEMWINs material by St. Louis Community College is licensed under a Creative Commons Attribution 4.0 International License.

Adult Learning Academy
Elementary Algebra Workbook
5.1 Simplifying Expressions

1. $x^{6} \cdot x^{2}$
2. $x^{6}+x^{2}$
3. $x^{6} \div x^{2}$
4. $\left(x^{6}\right)^{2}$
5. $10 x^{8} \cdot 2 x^{2}$
6. $\left(10 x^{8}\right)^{2}$
7. $\frac{10 x^{8}}{2 x^{2}}$
8. $10 x^{8}-2 x^{2}$
9. $10 x^{8}-2 x^{8}$
10. -5^{2}
11. 5^{-2}
12. 0^{5}
13. 0^{0}
14. -5^{-2}
15. $(-5)^{2}$
16. $(-5)^{-2}$
17. $5 x^{-2}$
18. $(5 x)^{-2}$
19. x^{0}
20. $5 x^{0}$
21. $(5 x)^{0}$
22. $\left(\frac{5}{x}\right)^{-2}$
23. $\frac{12 x^{4} x^{8}}{4 x^{3}}$
24. $\frac{-10 x^{5} y^{-3}}{15 x^{-3} y^{2}}$
25. $\frac{4 x^{7} x^{-3} y^{7}}{4 x^{5} y^{6}}$
26. $\left(\frac{7 x^{5} y^{-2}}{14 x^{-3} y^{4}}\right)^{3}$
27. $\left(\frac{12 x^{-2} y^{4}}{4 x^{-3} y^{-3}}\right)^{-3}$

Adult Learning Academy
Elementary Algebra Workbook
5.2 Color Matching Simplified Expressions

5.2 Color Matching Simplified Expressions

Simplify each expression, and color the matching simplified expressions.

1. $x \cdot x$	11. $(x+7)(x-5)$	21. $(3 x-5)^{2}$
2. $\mathrm{x} \cdot \mathrm{x}^{2}$	12. $(\mathrm{x}+7)(\mathrm{x}-5)$	22. $(2 x+7)^{2}$
3. $x^{2} \cdot x^{3}$	13. $(x+7)(x-7)$	23. $(3 x-5)(3 x+5)$
4. $x^{5} \cdot x^{2}$	14. $(x-5)(x+5)$	24. $(2 x+7)(2 x-7)$
5. $5 x^{3} \cdot-2 x^{4}$	15. $(x+7)^{2}$	25. $(x+y)(x-y)$
6. $-6 x^{5} \cdot-4 x^{3}$	16. $(\mathrm{x}-7)^{2}$	26. $(x+y)^{2}$
7. $3 x\left(4 x^{2}-5 x+1\right)$	17. $(x+5)^{2}$	27. $(x-y)^{2}$
8. $-2 x^{3}\left(5 x^{4}-3\right)$	18. $(\mathrm{x}-5)^{2}$	28. $(3 x+2 y)(3 x-2 y)$
9. $7 x^{2}\left(x^{3}-3 x+2\right)$	19. $(3 x+5)(2 x-7)$	29. $(3 x+2 y)^{2}$
10. $(\mathrm{x}+7)(\mathrm{x}+5)$	20. $(3 x-5)(2 x+7)$	30. $(3 x-2 y)^{2}$

Adult Learning Academy Elementary Algebra Workbook
5.4 ScIENTIFIC NOTATION

Fill in the table:

Item	Scientific Notation	Standard Notation
Approximate number of hairs on your head		140,000
Number of cells in your brain		$100,000,000,000$
Length of a rhinovirus in meters	2.7×10^{9}	.000000020
Number of heartbeats in a lifetime	1.0×10^{-8}	
Speed that human hair grows in miles per hour	3.0×10^{13}	
Number of red blood cells in a human body	2.75×10^{-3}	$5,000,000$
Lung capacity of a blue whale in milliliters		
Speed of a snail in kilometers per second	Thickness of a sheet of paper in inches	
The		

Adult Learning Academy Elementary Algebra Workbook 5.5 THINKING AbOUT POLYNOMIALS

Expression	CHOOSE: Monomial, Binomial, Trinomial, Polynomial	Degree
$3 x^{2}-2 x+1$		
$5 x y z$		
$4 x+2 y$		
$5 x^{2} y-11$		
139		
$-642 \mathrm{x}^{39}$		
$2 y+3 x-5 w+p$		
$57 \mathrm{x}^{5}-2 \mathrm{x}^{3}+11 \mathrm{x}$		
X		
$4 x^{2}+3 x+x$		
$2 \mathrm{x}+\mathrm{y}+\mathrm{z}^{12}$		
$5 x^{0}$		
$100 \mathrm{x}^{2}-\mathrm{py}^{3}$		
$3 x+2$		
$10 x-y+z+p-5$		

1. Create a $2^{\text {nd }}$-degree trinomial:
2. Create a $4^{\text {th }}$-degree monomial:

3. Create a $3^{\text {rd }}$-degree binomial:
4. Can the sum of two binomials ever be a trinomial? If so, show an example:
5. Can the sum of two binomials ever be a monomial? If so, show an example:
6. Can the sum of two binomials ever be a binomial? If so, show an example:
7. Can the product of two binomials ever be a binomial? If so, show an example:
8. Can the product of two binomials ever be a trinomial? If so, show an example:
9. Can the product of two binomials ever have four terms? If so, show an example:

Adult Learning Academy
Elementary Algebra Workbook

5.6 Evaluating, Adding, and Subtracting
 Polynomials

Here are three functions:

$$
f(x)=3 x^{2}-2 x+1 \quad g(x)=-2 x^{2}-5 \quad h(x)=-4 x+2
$$

To "evaluate" means to plug in the value of x and see what you get. When you plug in a negative number for x , always put parentheses around it!

1. Evaluate the following:
a) $f(2)$
b) $g(-3)$
c) $\mathrm{h}(0)$
d) $\mathrm{f}(-5)$
e) $g(0)$
f) $h(-5)$
2. When you add and subtract polynomials, combine like terms. When you subtract, be sure to subtract EVERY term!
a) $f(x)+g(x)$
b) $g(x)+h(x)$
c) $f(x)+h(x)$
d) $f(x)-g(x)$
d) $f(x)-h(x)$
e) $g(x)-h(x)$
3. You can also multiply every term of a polynomial by a number. Find these:
a) $4 f(x)+3 g(x)$
b) $5 f(x)-2 h(x)$
4. The day's revenue (income) for a computer company depends on how many clients come to get their computers fixed. The revenue can be modeled by the function

$$
\begin{array}{ll}
R(x)=x^{3}-x^{2} \quad \begin{array}{l}
\text { where } \mathrm{R}(\mathrm{x}) \text { is the revenue in dollars, } \\
\text { and } \mathrm{x} \text { is the number of clients that day }
\end{array}
\end{array}
$$

The day's costs (expenses) for the same company also depend on how many clients come to get their computers fixed. The costs can be modeled by the function

$$
\begin{aligned}
C(x)=.75 x^{3}-.7 x^{2}-.5 x+10 & \text { where } \mathrm{C}(\mathrm{x}) \text { is the cost in dollars, } \\
& \text { and } \mathrm{x} \text { is the number of clients that day }
\end{aligned}
$$

Any business calculates its PROFIT by starting with Revenue (income) and subtracting expenses (costs). So the profit function, $\mathrm{P}(\mathrm{x})$, can be modeled by

$$
P(x)=R(x)-C(x) .
$$

a. For this company, what is the profit function? (subtract $R(x)-C(x))$:
b. If 3 clients come to get their computers fixed on a given day, what is the Revenue? The Cost? The Profit?
c. If 20 clients come to get their computers fixed on a given day, what is the Revenue? The Cost? The Profit?
d. Say that Revenue doubles (get multiplied by 2), but costs remain the same. Show the new function for Profit:
2. Write an algebraic expression for the PERIMETER (add all the sides) and the AREA (length times width) of each rectangle on the page. Remember that area is measured in square units.
DIMENSIONS

a. | PERIMETER |
| :--- | AREA

x inches
x inches
b.

$2 x$ feet +1
c.

3 xcm
d.

e.

f.

3. Barnes-Jewish Hospital in St. Louis is 177 feet tall. If you stood at the top of the hospital and dropped a penny (NOTE: this is NOT recommended!), the following function tells you high off the ground the penny would be after t seconds:

$$
h(t)=-16 t^{2}+177
$$

where t is the number of seconds since you
 dropped the penny, and $h(t)$ is the penny's height in feet off the ground.
a. Find $\mathrm{h}(0)$. What does this information tell you?
b. Find $h(1)$, the height of the penny 1 second after being dropped:
c. Find $\mathrm{h}(2)$, the height of the penny 2 seconds after being dropped:
d. Find $\mathrm{h}(3)$, the height of the penny 3 seconds after being dropped:
e. Would the penny still be falling 4 seconds after being dropped? How do you know?
5.2 Color Matching Expressions

$$
\begin{aligned}
& 2^{0}=\frac{3 x}{3 x}=1 \\
& \frac{2 x}{x}=\left(53 x^{4}+3\right)-\left(53 x^{4}+1\right)=2 x^{0} \\
& -5^{2}=0 x-25=-25 \\
& \hline x+x=5 x-3 x=2 x \\
& \hline 100 x^{2}-99 x^{2}=x \cdot x=x^{2} \\
& \hline 3 x^{2}-x^{2}=\frac{10 x^{5}}{5 x^{3}}=2 x^{2} \\
& \hline \frac{x^{3}+x}{x}=x^{2}+1=\left(5 x^{2}-1\right)-\left(4 x^{2}-2\right)=x^{2}+1 \\
& \hline(x+1)(x-1)=\left(5 x^{2}-2\right)-\left(4 x^{2}-1\right)=x^{2}-1 \\
& \hline(x+1)^{2}=x^{2}+2 x+1 \\
& \hline(x-1)^{2}=\frac{5 x^{2}-10 x+5}{5}=x^{2}-2 x+1 \\
& \hline
\end{aligned}
$$

5.3 Multiplying Polynomials

1. x^{2}
2. x^{3}
3. x^{5}
4. x^{7}
5. $-10 x^{7}$
6. $24 x^{8}$
7. $12 x^{3}-15 x^{2}+3 x$
8. $-10 x^{7}+6 x^{3}$
9. $7 x^{5}-21 x^{3}+14 x^{2}$
10. $x^{2}+12 x+35$
11. $x^{2}+2 x-35$
12. $x^{2}-12 x+35$
13. $x^{2}-49$
14. $x^{2}-25$
15. $x^{2}+14 x+49$
16. $x^{2}-14 x+49$
17. $x^{2}+10 x+25$
18. $x^{2}-10 x+25$
19. $6 x^{2}-11 x-35$
20. $6 x^{2}+11 x-35$
21. $9 x^{2}-30 x+25$

5.3 Multiplying Polynomials (cont.)

22. $4 x^{2}+28 x+49$
23. $9 x^{2}-25$
24. $4 x^{2}-49$
25. $x^{2}-y^{2}$
26. $x^{2}+2 x y+y^{2}$
27. $x^{2}-2 x y+y^{2}$
28. $9 x^{2}-4 y^{2}$
29. $9 x^{2}+12 x y+4 y^{2}$
30. $9 x^{2}-12 x y+4 y^{2}$

5.4 Scientific Notation

Item	Scientific Notation	Standard Notation
Number of hairs on your head	$\mathbf{1 . 4 \times \mathbf { 1 0 } ^ { 5 }}$	140,000
Number of cells in your brain	$\mathbf{1 . 0 \times 1 0 ^ { 1 1 }}$	$100,000,000,000$
Length of a rhinovirus in meters	$\mathbf{2 . 0 \times 1 0 ^ { - 8 }}$.000000020
Number of heartbeats in a lifetime	2.7×10^{9}	$\mathbf{2 , 7 0 0 , 0 0 0 , 0 0 0}$
Speed that human hair grows in miles per hour	1.0×10^{-8}	$\mathbf{. 0 0 0 0 0 0 0 1}$
Number of red blood cells in a human body	3.0×10^{13}	$\mathbf{3 0 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$
Lung capacity of a blue whale in mL	$\mathbf{5 . 0 \times 1 0 ^ { 6 }}$	$5,000,000$
Speed of a snail in kilometers per second	$\mathbf{1 . 3 \times 1 0 ^ { - 5 }}$.000013
Thickness of a sheet of paper in inches	2.75×10^{-3}	$\mathbf{. 0 0 2 7 5}$

5.5 Thinking About Polynomials

Expression	CHOOSE:	Degree
$3 \mathrm{x}^{2}-2 \mathrm{x}+1$	Trinomial	$\mathbf{2}^{\text {nd }}$
5 xyz	Monomial	$\mathbf{3}^{\text {rd }}$
$4 \mathrm{x}+2 \mathrm{y}$	Binomial	$\mathbf{1}^{\text {st }}$
$5 \mathrm{x}^{2} \mathrm{y}-11$	Binomial	$\mathbf{3}^{\text {rd }}$
139	Monomial	$\mathbf{0}^{\text {degree }}$
$-642 \mathrm{x}^{39}$	Monomial	$\mathbf{3 9}^{\text {th }}$
$2 \mathrm{y}+3 \mathrm{x}-5 \mathrm{w}+\mathrm{p}$	Polynomial	$\mathbf{1}^{\text {st }}$
$57 \mathrm{x}^{5}-2 \mathrm{x}^{3}+11 \mathrm{x}$	Trinomial	$\mathbf{5}^{\text {th }}$
x	Monomial	$\mathbf{1}^{\text {st }}$
$4 \mathrm{x}^{2}+3 \mathrm{x}+\mathrm{x}$	Trinomial	$\mathbf{2}^{\text {nd }}$
$2 \mathrm{x}+\mathrm{y}+\mathrm{z}^{12}$	Trinomial	$\mathbf{1 2}^{\text {th }}$
$5 \mathrm{x}^{0}$	Monomial	$\mathbf{0}^{\text {degree }}$
$100 \mathrm{x}^{2}-\mathrm{py}^{3}$	Binomial	$\mathbf{4}^{\text {th }}$
$3 \mathrm{x}+2$	Binomial	$\mathbf{1}^{\text {st }}$
$10 \mathrm{x}-\mathrm{y}+\mathrm{z}+\mathrm{p}-5$	Polynomial	$\mathbf{1}^{\text {st }}$

5.5 Thinking About Polynomials (cont.)

1. answers will vary, ex. $x^{2}+3 x-5$
2. answers will vary, ex. $5 \mathrm{x}^{4}$
3. answers will vary, ex. $5 x^{3}-3 x$
4. Yes, $(x+3)+(y+5)=x+y+8$
5. Yes, $(x+3)+(x-3)=2 x$
6. Yes, $(x+3)+(x+5)=2 x+8$
7. Yes, $(x+3)(x-3)=x^{2}-9$
8. Yes, $(x+3)(x+2)=x^{2}+5 x+6$
9. Yes, $(x+3)(y+w)=x y+x w+3 y+3 w$

5.6 Evaluating, Adding, and Subtracting Poly.

1a. $f(2)=3(4)-2(2)+1=9$
1b. $g(-3)=-2(9)-5=-23$
1c. $h(0)=-4(0)+2=2$
1d. $f(-5)=3(25)-2(-5)+1=86$
1e. $g(0)=-2(0)-5=-5$
1f. $h(-5)=-4(-5)+2=22$
2a. $x^{2}-2 x-4$
2b. $-2 x^{2}-4 x-3$
2c. $3 x^{2}-6 x+3$
2d. $5 x^{2}-2 x+6$
2e. $-2 x^{2}+4 x-7$
2f. $3 x^{2}+2 x-1$
3a. $12 x^{2}-8 x+4-6 x^{2}-15$ $=6 x^{2}-8 x-11$
3b. $15 x^{2}-10 x+5+8 x-4$
$=15 x^{2}-2 x+1$
5.7 Career Applications: STEM

1a. $R(x)-C(x)=x^{3}-x^{2}-\left(.75 x^{3}-.7 x^{2}-.5 x+10\right)$

$$
\begin{aligned}
& =x^{3}-x^{2}-.75 x^{3}+.7 x^{2}+.5 x-10 \\
& =.25 x^{3}-.3 x^{2}+.5 x-10
\end{aligned}
$$

1b. $\mathbf{R (3)}=3^{3}-3^{2}=27-9=\$ 18$
$\mathbf{C}(3)=.75\left(3^{3}\right)-.7\left(3^{2}\right)-.5(3)+10$
$=.75(27)-.7(9)-1.5+10$
= 20.25-6.3-1.5 + 10
$=\$ 22.45$
$\mathbf{P}(3)=18-22.45=-\$ 4.45$ (loss)
1c. $\mathbf{R}(\mathbf{2 0})=20^{3}-20^{2}=8000-400=\$ 7600$
$\mathbf{C}(\mathbf{2 0})=.75\left(20^{3}\right)-.7\left(20^{2}\right)-.5(20)+10$
$=.75(8000)-.7(400)-10+10$
$=6000-280$
= \$5720
$\mathbf{P (2 0)}=7600-5720=\$ \mathbf{1 8 8 0}$

5.7 Career Applications: STEM (cont.)

1d. $\mathbf{P}(x)=2 R(x)-C(x)$
$=2 \mathrm{x}^{3}-2 \mathrm{x}^{2}-\left(.75 \mathrm{x}^{3}-.7 \mathrm{x}^{2}-.5 \mathrm{x}+10\right)$
$=1.25 x^{3}-1.3 x^{2}+.5 x-10$

2a. $P=x+x+x+x=4 x$ in.
A $=x * x=x^{2}$ sq. in.
2b. $\mathbf{P}=\mathrm{x}+(2 \mathrm{x}+1)+\mathrm{x}+(2 \mathrm{x}+1)$

$$
=6 \mathrm{x}+2 \mathrm{ft} .
$$

$$
\mathbf{A}=x(2 x+1)
$$

$$
=2 x 2+x \text { sq. ft. }
$$

2c. $\mathbf{P}=3 \mathrm{x}+(\mathrm{x}-5)+3 \mathrm{x}+\mathrm{x}-5$

$$
=8 \mathrm{x}-10 \mathrm{~cm}
$$

$$
A=3 x(x-5)
$$

$$
=3 x 2-15 x \text { sq. cm }
$$

2d. $\mathbf{P}=(x+5)+(x-3)+(x+5)+(x-3)$

$$
=4 x+4 \text { meters }
$$

A $=(\mathrm{x}+5)(\mathrm{x}-3)$
$=x^{2}-3 x+5 x-15$

$$
=x^{2}+2 x-15 \text { sq. meters }
$$

2e. $\mathbf{P}=(x+7)+(x-7)+(x+7)+(x-7)$

$$
=4 x \text { miles }
$$

$\mathbf{A}=(\mathrm{x}+7)(\mathrm{x}-7)$
$=x^{2}-49$ sq. miles
2f. $\mathbf{P}=(x+5)+(x+5)+(x+5)+(x+5)$

$$
=4 x+20 \mathrm{~km}
$$

A $=(x+5)(x+5)$

$$
=x^{2}+10 x+25 \text { sq. } k m
$$

3a. $\mathbf{h}(\mathbf{0})=-\mathbf{1 6}(\mathbf{0})^{2}+177=177$
This tells us that the penny is 177 feet off the ground (on top of the building) when you haven't thrown it yet
3b. $\mathbf{h (1)}=-16(1)^{2}+177=-16+177=\mathbf{1 6 1}$ feet.
3c. $\mathbf{h (2)}=-16(2)^{2}+177=-64+177=\mathbf{1 1 3}$ feet
3d. $\mathbf{h (3)}=-16(3)^{2}+177=\mathbf{3 3}$ feet
3e. No ; $\mathrm{h}(4)=-16(4)^{2}+177=-79$ feet (underground?)!

