Adult Learning Academy
Elementary Algebra Workbook

Module 3: The Rectangular Coordinate System, Graphs of Linear equations, Slope

Learning Objectives
By the time you finish this module, you should be able to:Identify the x-axis, y-axis, origin, and Quadrants I, II, III, and IV on a coordinate grid.Plot any point on the coordinate grid, including points on the axesGiven the equation of any line, graph it by making a table.Recognize and graph the equation of any horizontal line and any vertical line.Recognize when a given equation is NOT linear, and graph it by making a table.Find the x-intercept and the y-intercept of any linear equation.Find the slope of any line by looking at the graph.Find the slope of any line if you know two points.Identify the slope of horizontal and vertical lines.Graph a line when you are given a point and a slope.
Graph a line when you are given its equation in Slope-Intercept ($y=m x+b$) form.
\square Write any linear equation in Slope-Intercept $(y=m x+b)$ form.

IMPORTANT INFORMATION FROM MODULE 3:

The x-axis is the horizontal axis, and the independent variable. The y-axis is the vertical axis, and the dependent variable. Every point has an x-coordinate and a y-coordinate written as an ordered pair (x, y). The origin has coordinates $(0,0)$.

Points on the x-axis are called x-intercepts, and their y-coordinate is $0 .(3,0),(2,0)$, etc.
To find the x -intercept, plug 0 in for y and find the x -value that goes with it.
Points on the y-axis are called y-intercepts, and their x-coordinate is $0 .(0,3),(0,2)$, etc.
To find the y-intercept, plug 0 in for x and find the y -value that goes with it.
The equation $\mathrm{y}=\mathrm{a}$ number is always horizontal. The slope of a horizontal line is 0 .
The equation $\mathrm{x}=$ a number is always vertical. The slope of a vertical line is undefined.
SLOPE: Given any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the slope of the line containing them is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. Slope is also $\frac{\text { rise }}{\text { run }}$, or the rate of change.

St. Louis Community College

Topic	Website	Videos	Exercises
Plotting Points	www.khanacademy.org	Descartes \& Cartesian Coordinates	Graphing Points
		The Coordinate Plane	Graphing Pts \& Naming Quad.
		Plot Ordered Pairs	Points on the Coordinate Plane
		Quadrants of Coordinate Plane	
Points \& Equations	www.khanacademy.org	Ordered Pair Solutions of Eq 2	Ordered Pair Sol's to Linear Eq.
		Plotting (x,y) Relationships	Identifying Linear Relationships
		Graphs of Linear Equations	
		Application Problem with Graph	
		Interpreting Linear Graphs	
		Exploring Linear Relationships	
		Recognizing Linear Functions	
		Graphing Lines 1	
Intercepts	www.khanacademy.org	Graphing Using x and y Intercepts	Solving for the X-Intercept
		Graphing Using Intercepts	
		X and Y Intercepts	
		X and Y Intercepts 2	
Horizontal \& Vertical	$\underline{\text { http://www.youtube.com/watch?v=KwBE2pJDWvU }}$	Horizontal and Vertical Lines	
	http://www.youtube.com/watch?v=VMitkRc5jHA	Horizontal and Vertical Lines	
Slope	www.khanacademy.org	Slope of a Line	Identifying Slope of a Line
		Slope of a Line 2	Line Graph Intuition
		Slope and Rate of Change	
		Graphical Slope of a Line	
		Slope of a Line 3	
		Slope and y-intercept Intuition	
Slope-Intercept Form	www.khanacademy.org	Graph Line in Slope-Intercept Form	Graphing Linear Equations
		Converting to Slope-Intercept Form	Slope-Intercept Form
		Linear Eq in Slope-Intercept Form	

Topic	Website	Videos	Exercises
Slope-Intercept Form	www.khanacademy.org	Graphs Using Slope-Intercept Form	
(Cont.)		Equation of a Line 1	
		Equation of a Line 2	
Module 3 Test Review	www.stlcc.edu	Blackboard PowerPoint	Ten-Second Graphing
		Blackboard PowerPoint	Ten-Second Graphing Version 2
		Blackboard PowerPoint	Module 3 Review Flashcards

MoSTEMWINs

 sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.
(c) (i) Unless otherwise noted this MoSTEMWINs material by St. Louis Community College is licensed under a Creative Commons Attribution 4.0 International License.
Adult Learning Academy Elementary Algebra Workbook
3.1 Point-Plotting Practice

There are 4 parts to this picture.

1. Plot these points and connect them in order:
$(6,8)(5,6)(6,4)(2,-4)(0,-5)$
$(-1,-6)(-2,-9)(-1,-11)(0,-12)$
$(0,-13)(-3,-12)(-3,-11)(-4,-9)$
$(-4,-6)(-6,-9)(-8,-11)(-8,-12)$
$(-1,-14)(-7,-14)(-10,-13)$
$(-10,-11)(-8,-9)(-6,-3)(-5,1)$
$(-3,3)$
$(2,6)(2,10)(3,11)(5,12)$
$(9,10)(9,9)(6,9)(9,8)(8,7)$
$(6,8)$
2. Plot these points and connect them in order:
$(5.5,3)(7,3)(7,2)(5,2)$
3. Plot these points and connect them in order:
$(3,3)(5,1)(7,1)(7,0)(4,0)$
$(2,2)$
4. Plot these points and connect them in order:
$(2,-4)(3,-11)(4,-12)(4,-13)$
$(1,-12)(1,-11)(0,-5)$

What do you see?
Plot the points on the left hand side to find out!

Adult Learning Academy Elementary Algebra Workbook
 3.2 GRAPHING PrActice

Make a table and plot points to graph the equations.

1. $2 \mathrm{x}-\mathrm{y}=1$
2. $y=1 / 2 x-3$

3. $y=-3 x$
4. $y=x^{2}$

5. $\mathrm{y}=\mathrm{x}$
6. $x+y=5$

Make a table and plot points to graph the equations.
7. $\mathrm{x}-\mathrm{y}=1$
8. $y=-2 x+3$

9. $y=3 / 4 x$

11. $y=|x|$

12. $\mathrm{y}=-2 \mathrm{x}+3$

10. $\mathrm{y}=\mathrm{x}-3$

Special Lines: Horizontal, Vertical

Question: Where does a 3,000-pound rhinoceros sleep?
Answer: Anywhere it wants to!

13. $y=3$

A Horizontal line ALWAYS has the equation $\mathrm{y}=\mathrm{a}$ number
14. $x=5$

A Vertical line ALWAYS has the equation $\mathrm{x}=\mathrm{a}$ number

Graph each equation using any method
15. $\mathrm{y}=1 / 4 \mathrm{x}-2$

18. $\mathrm{y}=7$

21. $y=-3 / 4 x+2$

16. $3 x$

19. $y=-2 / 3 x+1$

22. $\mathrm{y}-\mathrm{x}=3$

17. $1 / 2 \mathrm{x}+3$

20. $x=4$
23. $3 x+5 y=15$

Graph each equation using any method
24. $y=-2 x+1$

27. $x=-4$

30. $y=-\frac{4}{3} x$

25. $\mathrm{y}=\frac{3}{5} \mathrm{x}$

28. $y=\frac{1}{5} x+3$

31. $\mathrm{x}+\mathrm{y}=5$

26. $y=1 / 2 x-3$

29. $y=-2$

32. $\mathrm{y}=\mathrm{x}^{2}-3$

Graph the line through the given point, with the given slope
33. Point (3, 1) Slope $1 / 2$

36. Point (-3, -2) Slope 4

39. Point $(2,-1)$ Slope $-\frac{3}{2}$

34. Point $(-4,1)$ Slope $-\frac{2}{3}$

37. Point $(-4,0)$ Slope -2

40. Point (4, 0) Slope undefined

35. Point (0,0) Slope $\frac{1}{3}$

38. Point $(-2,3)$ Slope 0

41. Point $(-1,0)$ Slope 1

Adult Learning Academy Elementary Algebra Workbook
3.3 Slope Practice

1. Slope practice: What is the slope of each line below?
a.

b.

d.

e.

c.

f.

2. Calculate the slope of the line containing each pair of points. Graph each line.

a. $(0,0)$ and $(5,3)$

e. $(4,-2)$ and $(-2,-4)$
g. $(3,6)$ and $(3,7)$
c. $(3,-1)$ and $(-4,5)$

d. $(3,-1)$ and $(5,2)$
f. $(3,6)$ and $(7,6)$
h. $(-3,4)$ and $(1,-2)$
3. If a line has positive slope, then its graph \qquad from left to right.
4. If a line has negative slope, then its graph \qquad from left to right.

Adult Learning Academy

Elementary Algebra Workbook
3.4 Practice with Slope-Intercept Form

Slope-Intercept Form y = mx + b

Rewrite each equation in slope-intercept form and graph the line.

	Equation	SLOPE-INTERCEPT FORM	SLope	Y-INTERCEPT		PH
I.	$y+3=2(x-1)$			(0,)		
J.	$5 x-3 y=15$			(0,)		
K.	Slope is - $3 / 4$ y -intercept is 5			(0,)	-	
L.	Slope is 0 y -intercept is -2			(0,)		
M.	Vertical line Through ($-5,1$)			(0,)		
N.	Horizontal line through $(3,1)$			(0,)		
O.	Through the points $(1,5)$ and $(-2,3)$	You'll learn to create the equation for this line in the next module! For now, can you graph it?	Estimate if	$(0, \quad)$		H
P.	Through the points $(3,0)$ and $(-1,4)$	You'll learn to create the equation for this line in the next module! For now, can you graph it?	$\begin{aligned} & \text { Estimate if } \\ & \text { necessary } \end{aligned}$	(0,)		

1. Carefully graph each to create a design below:
a. $y=\frac{3}{2} x+8$
b. The line through the point $(-6,1)$ with slope $\frac{-3}{2}$
c. $\mathrm{y}=4$
d. The line through the point $(2,-4)$ with a slope of 0 .
e. $y=\frac{3}{2} x-8$
f. $3 x+2 y=16$

Elementary Algebra Workbook

3.6 CAREER APPLICATIONS: STEM

Remember function notation from Module 2? Believe it or not, $f(x)$ is just another way of saying " y "! Any equation that starts with $y=m x+b$ could also be written as $f(x)=m x+b$. The advantage of the $f(x)$ notation is that you can tell exactly what number to substitute in for x !

1. Forensic scientists can approximate a person's height by measuring the person's femur, which is the long bone that stretches from the hip socket to the kneecap. The relationship can be expressed as a function:

For females:
$f(x)=2.3 x+61 \quad$ where x is the length of the femur in $c m$, and $f(x)$ is the woman's height in centimeters.
For males:
$m(x)=2.2 x+69 \quad$ where x is the length of the femur in $c m$, and $m(x)$ is the man's height in centimeters
a. Fill in the tables:

WOMAN	
Length of femur, X	Height in cm, $\mathrm{f}(\mathrm{x})$
40 cm	
45 cm	
50 cm	
55 cm	

MAN	
Length of femur, X	Height in cm, $\mathrm{f}(\mathrm{x})$
40 cm	
45 cm	
50 cm	
55 cm	

b. Graph it!

Height in cm

c. What is the slope and the f-intercept for the women's equation?
d. What is the slope and they m-intercept for the men's equation?
2. The dose for a particular medication is 5 milliliters per kilogram that the patient weighs. This relationship can be expressed as the function $d(x)=5 x$, where d is the dose in milliliters and x is the weight of the patient in kilograms.
a. Calculate the dose for patients whose weights are listed:

Weight in kilograms, x	Dose in milliliters, $\mathrm{d}(\mathrm{x})$
Baby, 5 kg	
Child, 20 kg	
Woman, 50 kg	
Man, 60 kg	

b. What is the slope of this line? What is the d-intercept?
c. What does the slope mean in this problem? Why is it positive?
d. If we graphed this line, we would only show points in the first quadrant. Why?
3. In Module 2, you worked with the formula for converting Celcius temperature to Fahrenheit. Now you can see that this formula is a linear equation!

$$
F=\frac{9}{5} C+32
$$

You can also write the fraction as a decimal, so the formula becomes

$$
\mathrm{F}=1.8 \mathrm{C}+32
$$

a. What is the slope of the equation? What is its F-intercept?
b. Fill in the table:

C°	F°
0	
10	
20	
30	

c. Sketch the graph:

4. Remember the problem from Module 2 about how long it costs to take courses at St. Louis Community College? Now you can recognize that function as a linear equation!

St. Louis Community College charges $\$ 101$ per credit hour, plus $\$ 12$ in fees. If $x=$ the number of credit hours a student takes, and $y=$ total paid, the following function describes the situation:

$$
y=101 x+12
$$

a. What is the y intercept of this line? What does it tell you?
b. What is the slope of the line? Why is it positive?
c. The line for this problem should only be graphed in the first quadrant. Why?
d. Graph it! Choose an appropriate scale for the x-axis and the y-axis.

5. Remember the cricket problem from Module 2? You can now recognize the function as a linear equation!

It has been observed that the number of chirps a cricket makes per minute depends on the air temperature! Here is the function relating the temperature in degrees Fahrenheit, x, to the number of chirps, y.

$$
y=4 x-160
$$

a. What is the slope of this line? Why is it positive?
b. What is the x-intercept of the line? What does it tell you?
c. Why does this graph make the most sense in the first quadrant?
d. Graph it! Choose an appropriate scale for the x -axis and the y -axis.

Adult Learning Academy Elementary Algebra Workbook
Module 3 Answer Key

3.1 Point-Plotting Practice

A tyrannosaurus rex

3.2 Graphing Practice
1.

5.

9.

13.

17.

2.

3.

6.

10.

14.

18.

7.

11.

15.

19.

4.

8.

12.

16.

20.

3.2 Graphing Practice (cont.)

21.

25.

29.

33.

37.

41.

22.

26.

30.

34.

38.

23.

27.

31.

1.
35.

39.

24.

28.

32.

36.

40.

3.3 Slope Practice

1a. $-1 / 3$
1b. $2 / 3$
1c. $1 / 2$
1d. $-1 / 2$
1e. 0
1f. Undefined
Graphs are approximate!
2a. $m=\frac{3-0}{5-0}=3 / 5$

2b. $m=\frac{-3-0}{5-0}=-3 / 5$

2c. $m=\frac{5-(-1)}{-4-3}=-6 / 7$

2d. $m=\frac{2-(-1)}{5-3}=3 / 2$

2e. $m=\frac{-4-(-2)}{-2-4}=\frac{-2}{-6}=1 / 3$

2f. $m=\frac{6-6}{7-3}=\frac{0}{4}=0$ (horizontal)

2g. $m=\frac{7-6}{3-3}=\frac{1}{0}=$ Undefined (vertical)

2h. $m=\frac{-2-4}{1-(-3)}=\frac{-6}{4}=-3 / 2$

3. goes uphill
4. goes downhill
3.4 Slope-Intercept Form

	SIFORM	SLOPE	Y-Int.	GRAPH
A.	$y=-3 / 2 x+3$	$\mathbf{m}=-3 / 2$	$(0,3)$	
B.	$y=2 x+4$	$\mathbf{m}=2$	$(0,4)$	
C.	$y=-1 / 2 x+3 / 2$	$m=-1 / 2$	(0, 3/2)	
D.	$y=1 / 2 x-5 / 2$	$\mathrm{m}=1 / 2$	($0,-\mathbf{5} / 2$)	8
E.	$\mathbf{y}=3 \mathrm{x}$	$\mathbf{m}=3$	$(0,0)$	
F.	$\mathbf{y}=-3 \mathrm{x}$	$\mathbf{m}=-3$	$(0,0)$	狃
G.	$y=1 / 2 x+7$	$\mathrm{m}=1 / 2$	$(0,7)$	\Longrightarrow
H.	$\mathrm{y}=\mathrm{x}-2$	$\mathrm{m}=1$	(0, -2)	

	SIFORM	SLOPE	Y-INT.	GRAPH
I.	$y=2 x-5$	$\mathrm{m}=2$	$(0,-5)$	
J.	$y=5 / 3 x-5$	$\mathrm{m}=5 / 3$	$(0,-5)$	
K.	$y=-3 / 4 x+5$	$m=-3 / 4$	$(0,5)$	$\#$
L.	$y=-2$	$\mathbf{m}=0$	(0, -2)	
M.	$x=-5$	undefined	n/a	
N.	$\mathrm{y}=1$	$\mathbf{m}=0$	$(0,1)$	
0	You'll learn to create the equation for this line in the next module!	$\mathrm{m}=2 / 3$	Estimate if necessary	\ldots
P.	You'll learn to create the equation for this line in the next module!	$\mathrm{m}=-1$	Estimate if necessary	\because

3.5 Line Designs!

1. Star

2. Tee-pee

3.6 Career Applications - STEM

11.

WOMAN	
Length of F X	Height in cm, $\mathrm{f}(\mathrm{x})$
40 cm	$\mathbf{1 5 3 ~ c m}$
45 cm	$\mathbf{1 6 4 . 5} \mathbf{~ c m}$
50 cm	$\mathbf{1 7 6} \mathrm{~cm}$
55 cm	$\mathbf{1 8 7 . 5} \mathrm{~cm}$

MAN	
Length of F X	Height in cm, $\mathrm{f}(\mathrm{x})$
40 cm	$\mathbf{1 5 7} \mathbf{~ c m}$
45 cm	$\mathbf{1 6 8} \mathbf{~ c m}$
50 cm	$\mathbf{1 7 9} \mathbf{~ c m}$
55 cm	$\mathbf{1 9 0} \mathbf{~ c m}$

1b.

1c. $\mathbf{m}=2.3, \mathrm{f}$-intercept $=61$
1d. $m=2.2, f$-intercept $=69$

3.6 Career Applications - STEM (cont.)

2a.

Weight in kg x	Dose in mL $\mathrm{d}(\mathrm{x})$
Baby, 5 kg	$\mathbf{d}(\mathbf{5})=\mathbf{5 (5)}=\mathbf{2 5}$
Child, 20 kg	$\mathrm{~d}(\mathbf{2 0})=\mathbf{5 (2 0)}=\mathbf{1 0 0}$
Woman, 50 kg	$\mathbf{d (5 0)}=\mathbf{5 (5 0)}=\mathbf{2 5 0}$
Man, 60 kg	$\mathbf{d (6 0)}=\mathbf{5 (6 0)}=\mathbf{3 0 0}$

2b. $\mathbf{m}=5$, \mathbf{d}-intercept $=0$
2c. for every kilogram you add in weight, the dose increases by 5 milliliters; the slope is positive because as weight increases, so does size of the dose
2d. Weight and doses are non-negative quantities

3a. $\mathbf{m}=1.8$, F-intercept $=32$
3b.

C°	F°
0	$\mathbf{3 2}$
10	$\mathbf{5 0}$
20	$\mathbf{6 8}$
30	$\mathbf{8 6}$

3c.

4a. y-int. = 12; this tells you the fee, regardless of the number of credit hours
4b. $m=101$, this number is positive because as credit hours increase, so does the cost
4c. Both credit hours and fees are positive quantities

3.6 Career Applications - STEM (cont.)

4d.

5a. $\mathrm{m}=4$; slope is positive because the higher the temperature, the faster they chirp
5b. \mathbf{x}-intercept $=40$; this tells you that crickets stop chirping at 40 degrees
5 c . The number of chirps must be positive, and crickets aren't out in negative temperatures
5d.

This product is 100% funded by the MoSTEMWINs $\$ 19.7$ million grant from the U.S. Department of Labor Employment and Training Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

Unless otherwise noted this MoSTEMWINs material by St. Louis Community College is licensed under a Creative Commons Attribution 4.0 International License.

