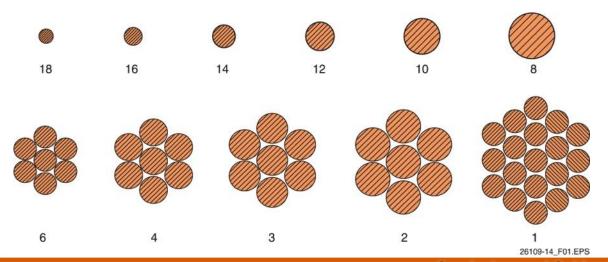


Objectives

When trainees have completed this session, they should be able to do the following:

- 1. From the cable markings, describe the insulation and jacket material, conductor size and type, number of conductors, temperature rating, voltage rating, and permitted uses.
- 2. Determine the allowable ampacity of a conductor for a given application.
- 3. Identify the *NEC*[®] requirements for color coding of conductors.
- 4. Install conductors in a raceway system.


Performance Task

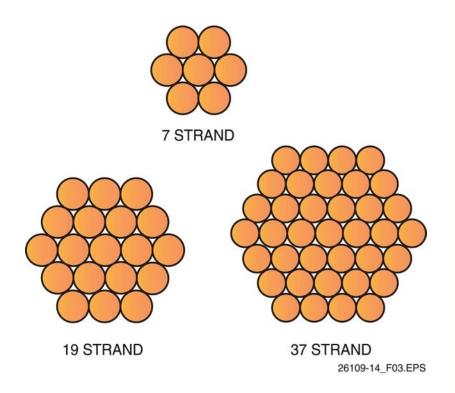
Install conductors in a raceway system.


Introduction; Conductors and Insulation

- Conductors are identified by size and insulation material.
- The size refers to the cross-sectional area of the currentcarrying portion of the wire and is expressed in American Wire Gauge (AWG) numbers.
- Conductor ampacity is affected by the conductor material and size, insulation, and installation location.

Wire Size Marking

For wire sizes larger than No. 16 AWG, the wire size is marked on the conductor insulation.



26109-14_F02.EPS

Strand Configurations

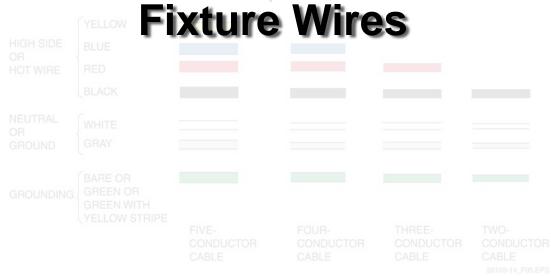
- Wire stranding provides conductor flexibility for pulling.
- Wire sizes No. 18 to No. 2 have 7 strands.
- Wire sizes No. 1 to 4/0 have 19 strands.
- Wire sizes 250 kcmil to 500 kcmil have 37 strands.
 (A kcmil is 1,000 circular mils or 0.001 inch.)

Aluminum Conductors

Aluminum conductors are designed with compact (compressed) stranding.

2.2.0 - 2.4.5

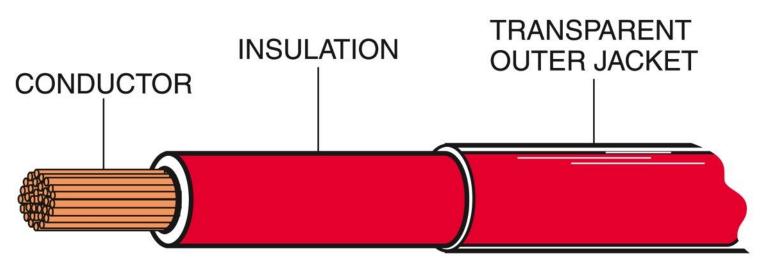
Ampacity; Conductor Material; Conductor Insulation


Table 1 Insulation Coding	
Letter	Description
Letter B E F H N P R S T U W X Z TW FEP FEPB MI MTW PFA RHH RHW SA SIS TFE THHN THHW THW	Description Braid Ethylene or Entrance Fluorinated or Feeder Heat-Rated or Flame-Retardant Nylon Propylene Rubber Silicon or Synthetic Thermoplastic Underground Weather-Rated Cross-Linked Polyethylene Modified Ethylene Tetrafluoroethylene Weather-Rated Thermoplastic (60°C/140°F) Fluorinated Ethylene Propylene Fluorinated Ethylene Propylene Fluorinated Ethylene Propylene with Glass Braid Mineral Insulation Moisture, Heat, and Oil-Resistant Thermoplastic Perfluoroalkoxy Flame-Retardant Heat-Rated Rubber Weather-Rated, Heat-Rated Rubber (75°C/167°F) Silicon Synthetic Heat-Resistant Thermoplastic Braided Silicon Extended Polytetrafluoroethylene Heat-Resistant Thermoplastic Moisture and Heat-Resistant Thermoplastic Moisture and Heat-Resistant Thermoplastic
UF USE XHH XHHW ZW	Weather-Rated, Heat-Rated Thermoplastic with Nylon Cover Underground Feeder Underground Service Entrance Thermoset Heat-Rated, Flame-Retardant, Weather-Rated Thermoset Weather-Rated Modified Ethylene Tetrafluoroethylene

- Ampacity is the safe currentcarrying capacity of a conductor at a specified temperature rating. Conductor ampacities are given in **NEC Tables 310.15(B)(16)** through 310.15(B)(21).
- Conductors are selected based on conductor material and the correct insulation for the application. The insulation type is typically stamped on the wire.

2.2.0 - 2.4.5

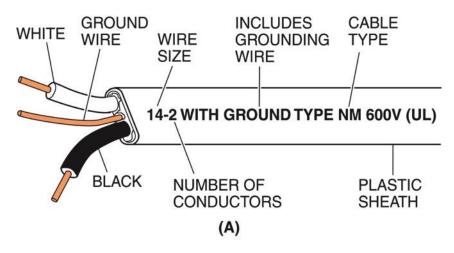
Next Session.r. Cable Insulation Color Codes


- A color code is used to help identify the individual wires in cable by the color of the insulation.
- In addition to selecting a wire of the correct size and number of conductors, wire selection must also consider the ambient temperature and termination point.

2.5.0

Fixture Wires

- Fixture wire is used to wire fixtures such as luminaires to a power source.
- Guidelines for fixture wire can be found in NEC Article 402.

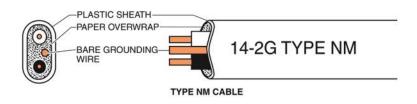


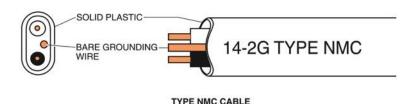
26109-14_F06.EPS

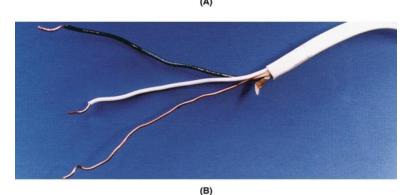
2.6.0 - 2.6.1

Cables

- Cables contain two or more insulated wires and may contain a grounding wire covered by an outer jacket or sheath.
- Cables are classified for use in dry, wet, or damp locations.
- Cables are marked to show the wire size, number of conductors, cable type, and voltage rating.


(B)


26109-14_F07.EPS



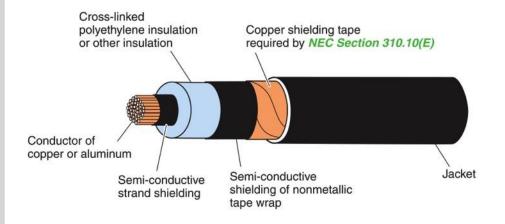
2.6.2 - 2.6.4

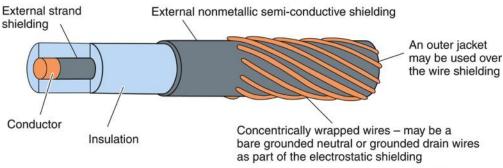
Nonmetallic-Sheathed Cable; Type UF Cable; Type NMS Cable

- Nonmetallic-sheathed cable (Types NM and NMC) is widely used in residential and commercial branch circuits and feeders.
- Type NMS contains power, signaling, and communications conductors in one cable.
- Guidelines for NM/NMC/NMS cable can be found in NEC Article 334.

Type MV Cable

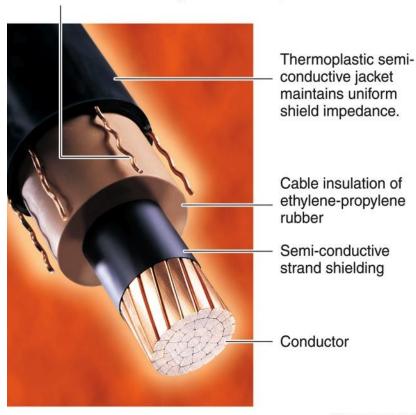
- Medium-voltage (MV) cable is used with voltages ranging from 2,001V to 35,000V.
- Guidelines for MV cable can be found in NEC Article 328.




Type MC Cable

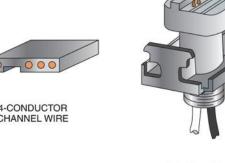
- Metal-clad (MC) cable contains one or more insulated conductors in a flexible metal tape or metallic sheath that may be covered in a nonmetallic jacket.
- Guidelines for MC cable can be found in NEC Article 330.

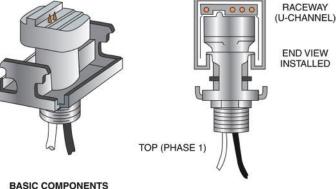
High-Voltage Shielded Cable


26109-14_F11.EPS

- Shielding is used with high-voltage cables to protect against surface discharge or burning due to corona discharge in ionized air.
- Various layers of shielding may be used in a single conductor.

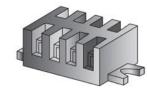
Corrugated Drain Wire Shielding

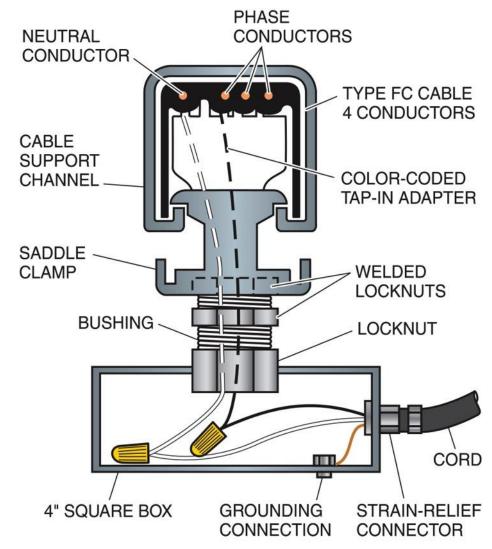

Six corrugated copper drain wires embedded in semi-conductive jacket provide shielding instead of tape shield, and can be pulled out of the way (ripped out of the jacket) to allow stress cone assembly at the correct point.



2.6.8 - 2.6.9

Channel Wire Assemblies


- Channel wire assemblies (Type FC) contain all of the wiring, supports, and taps in a single assembly that can be used to supply power to lighting fixtures or outlets.
- Guidelines for channel wire assemblies can be found in NEC Article 322.


FIXTURE HANGER

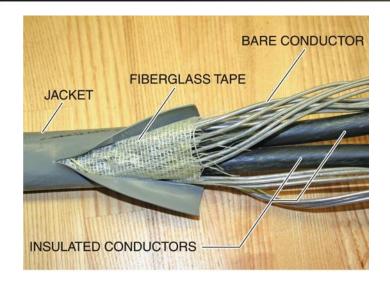
ACCESSORIES

TERMINAL BLOCK FOR CHANNEL BOX

26109-14_F13.EPS

2.6.8 - 2.6.9

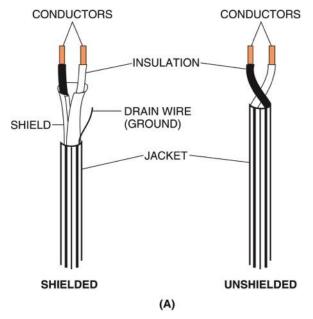
Type FC Connection

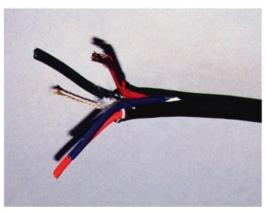

- Tap devices can be inserted anywhere along the assembly.
- Channel wire assemblies are only suitable for use in exposed locations and may not be concealed under walls or ceilings.

Type TC Cable

26109-14 F15.EPS

- Power and control tray
 (Type TC) cable contains
 two or more twisted
 conductors and is
 commonly used in cable
 tray, raceways, or
 underground applications.
- Guidelines for power and control tray cable can be found in NEC Article 336.




SE and USE Cable

- Where service-entrance (Type SE) or underground serviceentrance (Type USE) cable is used to supply power to a service entrance, it must be installed as specified in *NEC Article 230*.
- Additional guidelines for serviceentrance and underground service-entrance cable can be found in NEC Article 338.

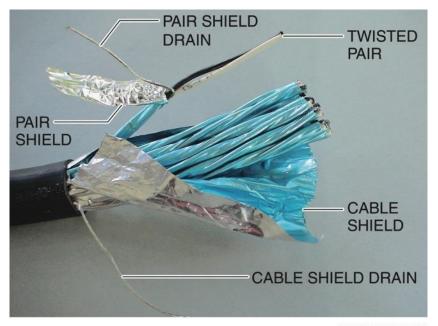
26109-14_F16.EPS

2.7.0 - 2.7.3

(B)

Instrumentation Control Wiring

- Instrumentation control wiring is supplied in pairs.
- A multi-pair cable typically has 12, 24, or 36 pairs of conductors.



26109-14_F17.EPS

2.7.0 - 2.7.3

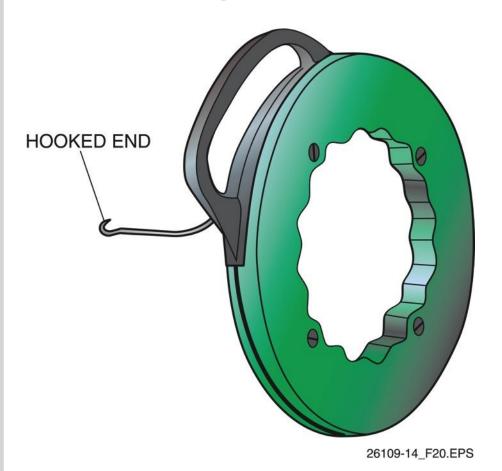
Shields

- Shields are used in instrumentation cable to protect against electrical noise or interference.
- A shield drain is a bare copper wire connected at one end to carry induced charges to ground.

2.7.0 - 2.7.3

Next Session... Jackets

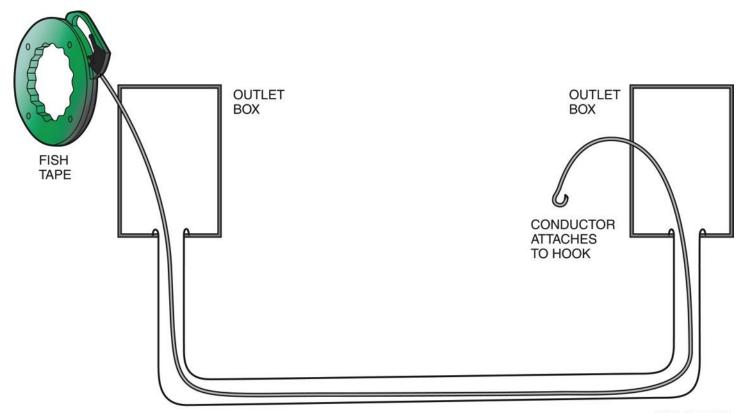
Installing Conductors hloride (PVC).


JACKE IN Conduit Systems kets include a rip cord for safer

26109-14_F19.EPS

making terminations.

types for instrumentation


Installing Conductors in Conduit Systems

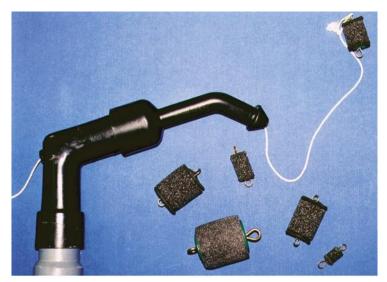
- Conductor installations are performed using fish tape, pull lines, and manual or power pulling equipment.
- Fish tape is made of flexible steel or nylon and is available in lengths between 25' and 200'.

Fish Tape Installation

Fish tape is fed between outlets or junction boxes.

Rodder

A rodder is a rigid fishing tool used in longer conduit runs (up to 1,000').



Power Conduit Fishing Systems

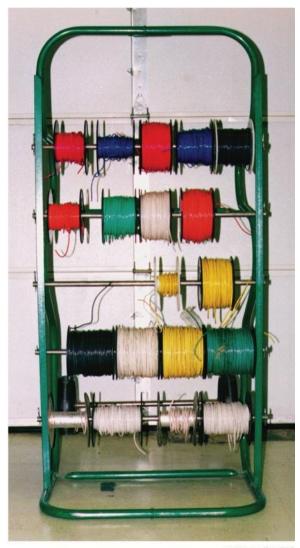
- Power fishing tools use a vacuum/blower system to either pull or push a plug and its string line through the conduit.
- A pull rope or conductor is then attached to the string line and the conductors installed.

FOAM PLUGS

Wire Grips

- Various types of wire grips are used to attach cable to the pull tape.
- With a basket grip, the fish tape hook holds the conductor and the pull on the tape tightens the basket for a secure connection.
- Pull lines are used with difficult pulls or larger conductors.

Pulling Equipment


- Pulling equipment can be either manual or electrically powered.
- Follow all jobsite and manufacturer safety precautions when making cable pulls!

(A) MANUAL WIRE PULLER

(B) POWER PULLER

26109-14_F26.EPS

Feeding Conductors into Conduit

- A reel cart is used when several conductors are pulled at once.
- Lubricate conductors as necessary using the correct compound for the insulation type and application.

Performance Task

This session will conclude with trainees practicing installing cable in a raceway system.

Wrap Up

3-2-1

- 3 Write 3 important things learned during class
- 2 Write 2 questions you have about the material
- 1 Write 1 thought you had about the material

Next Session...

MODULE EXAM

Review the complete module to prepare for the module exam. Complete the Module Review as a study aid.