Electrical Level 1

Objectives

When trainees have completed this lesson, they should be able to do the following:

1. Explain the basic characteristics of combination circuits.
2. Calculate, using Kirchhoff's voltage law, the voltage drop in series, parallel, and series-parallel circuits.
3. Calculate, using Kirchhoff's current law, the total current in parallel and series-parallel circuits.
4. Using Ohm's law, find the unknown parameters in series, parallel, and series-parallel circuits.

This is a knowledge-based module; there are no Performance Tasks.

1.0.0-2.1.0

Introduction; Resistive Circuits

26104-14_F01.EPS

- A series circuit contains only one path for current flow.
- In a series circuit, the current is equal at each point in the circuit.

1.0.0-2.1.0

Total Resistance

(A)

(B)

- In a series circuit, the total resistance is equal to the sum of the individual resistances.
- In the circuits shown here, the total resistance is:

Circuit A, $50 \Omega+75 \Omega+100 \Omega=225 \Omega$
Circuit B, $20 \Omega+40 \Omega+60 \Omega=120 \Omega$

2.2.0-2.1.0

Resistances in Parallel

- In a parallel circuit, the resistance is calculated by dividing the sum of the inverse values of the individual resistances by one:

$$
\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}}
$$

- In the circuit shown, the total resistance is :
$\frac{1}{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}}=$
$\frac{1}{0.5+0.25+0.125}=$

$$
\frac{1}{0.875}=1.14 \Omega
$$

26104-14_F03.EPS

2.2.1

Simplified Formulas

- The total resistance of equal resistors in parallel is found by dividing the resistance of each resistor by the number of resistors ($\left.R_{T}=R / N\right)$.
- The total resistance of two unequal resistors in parallel is found by multiplying the values of the two resistors and then dividing the sum of the two resistances:

$$
R_{T}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}
$$

2.3.0

Series-Parallel Circuits

- If a circuit does not divide, it is a series circuit.
- If a circuit divides into separate branches, it is a parallel circuit.
- If a circuit divides into separate branches and there are also series loads, it is a series-parallel circuit.

2.3.0

Redrawing a Series-Parallel Circuit

Series-parallel circuits can be redrawn to separate the series and parallel components.

2.3.0

Next Session... Series-Parallel Circuits

To calculate the total resistance in a series-parallel circuit, first calculate the effective resistance of the parallel component, then add it to the resistance of the series loads.

Applying Ohm's Law

2.4.0-2.4.1

Applying Ohm's Law

- To find the voltage across individual resistors, first calculate the total resistance in the circuit.
- Next, use the total resistance in the Ohm's Law equation ($\mathrm{E}=\mathrm{IR}$) to find the individual voltage drops.

26104-14_F08.EPS

2.4.2

Voltage and Current in Parallel Circuits

26104-14_F09.EPS

- In a parallel circuit, the total current is equal to the sum of the branch currents.
- The branch current is equal to the applied voltage divided by the resistance of that branch.

2.4.2

Solving for an Unknown Current

(A)

(B)

- The current in branch R_{2} in Circuit A can be calculated as follows:

$$
\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

- Rearrange to find I_{2} :

$$
\begin{aligned}
& I_{2}=I_{T}-I_{1} \\
& I_{2}=20 A-12 A=8 A
\end{aligned}
$$

- The current in branch R_{1} in Circuit B can be calculated as follows:

$$
I_{T}=I_{1}+I_{2}
$$

- Rearrange to find I_{1} :

$$
\begin{aligned}
& I_{1}=I_{T}-I_{2} \\
& I_{1}=35 \mathrm{~A}-20 \mathrm{~A}=15 \mathrm{~A}
\end{aligned}
$$

2.4.3

Voltage and Current in Series-Parallel Circuits

- The series resistance is found by adding $\mathrm{R}_{1}+\mathrm{R}_{2}$:

$$
\begin{aligned}
& R_{1+2}=R_{1}+R_{2} \\
& R_{1+2}=0.5 \mathrm{k} \Omega+0.5 \mathrm{k} \Omega \\
& \mathrm{R}_{1+2}=1 \mathrm{k} \Omega
\end{aligned}
$$

- Calculate the resistance of $\mathrm{R}_{3}+\mathrm{R}_{4}$ using either the general reciprocal formula or the product over sum method, as shown here:

$$
\begin{aligned}
& R_{3+4}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}} \\
& R_{3+4}=\frac{1 \mathrm{k} \Omega \times 1 \mathrm{k} \Omega}{1 \mathrm{k} \Omega+1 \mathrm{k} \Omega} \\
& R_{3+4}=0.5 \mathrm{k} \Omega
\end{aligned}
$$

Next Session... Series-Parallel Circuit

Calculate the total resistance as follows:

Kirchhoff's Laws

$\quad \mathrm{I}_{\mathrm{T}}=1.5 \mathrm{~V} / 1.5 \mathrm{k} \Omega=1 \mathrm{~mA}$ or 0.001 A

- Individual voltage drops are
calculated using Ohm's law:

3.0.0-3.1.0

Kirchhoff's Laws

- Kirchhoff's current law states that at any point in a circuit, the total current entering that point must equal the total current leaving that point:

$$
\begin{aligned}
& I_{A}+I_{B}-I_{C}=0 \\
& 5 A+3 A-8 A=0
\end{aligned}
$$

- Kirchhoff's current law is the basis for the practical rule in parallel circuits that the total
 line current must equal the sum of the branch currents.

3.0.0-3.1.0

Application of Kirchhoff's Current Law

- Applying Kirchhoff's current law to this circuit at Point C can be shown as follows:

$$
\begin{aligned}
& I_{T}-I_{3}-I_{4 / 5}=0 \\
& 6 A-2 A-4 A=0
\end{aligned}
$$

- Applying Kirchhoff's current law to this circuit at Point D can be shown as follows:

$$
\begin{aligned}
& I_{3}+I_{4 / 5}-I_{T}=0 \\
& A+4 A-6 A=0
\end{aligned}
$$

3.2.0

Kirchhoff's Voltage Law

- Kirchhoff's voltage law states that the algebraic sum of all the potential differences in a closed loop is equal to zero:

$$
\begin{aligned}
& E_{A}-E_{1}-E_{2}-E_{3}=0 \\
& 100 A-50 A-30 A-20 A=0
\end{aligned}
$$

- This means that the sum of the voltage drops in a circuit is equal to the applied voltage.

3.3.0

Loop Equations

- Any closed path for current flow is called a loop. A loop equation specifies the voltages around the loop:

$$
\begin{aligned}
& -E_{1}-E_{3}-E_{2}+E_{T}=0 \\
& -30 V-120 V-90 V+240 V=0
\end{aligned}
$$

- Voltages E_{1}, E_{3}, and E_{2} have a negative value because there is a decrease in voltage seen across each of these resistors in a clockwise direction.

3.3.0

Applying Kirchhoff's Voltage Law

The voltage EB is calculated as follows:

$$
-E_{3}-E_{B}-E_{2}-E_{1}+E_{A}=0
$$

Rearranged to solve for E_{B} :

$$
\begin{aligned}
& E_{B}=E_{A}-E_{3}-E_{2}-E_{1} \\
& E_{B}=15 V-2 V-6 V-3 V \\
& E_{B}=4 V
\end{aligned}
$$

Wrap Up

$$
3-2-1
$$

3 - Write 3 important things learned during class
2 - Write 2 questions you have about the material
1 - Write 1 thought you had about the material

Next Session...

MODULE EXAM

Review the complete module to prepare for the module exam. Complete the Module Review as a study aid.

