St. Louis Community College

Adult Learning Academy
Pre-Algebra Workbook
Unit 4: Ratios and Proportions

Learning Objectives

1. Ratios:

Express ratios using 3 different types of notation: words, colons (:), and fractionsPlace terms in the correct order when writing and converting ratiosSimplify ratios, including ratios involving fractionsWrite equivalent ratios2. Proportions:
\square Compare ratios and determine if they are true proportionsSolve proportion problems by setting up proportions and solving for unknown valuesUse proportional reasoning to perform measurement conversions

3. Word Problems:

Set up and solve word problems involving ratios, rates and proportions, including applications to the transportation industry

Adult Learning Academy
 Pre-Algebra Workbook
 Unit 4 Video \& Exercise List

Videos \quad Exercises

| Ratios | www.khanacademy.org | Introduction to Ratios | Expressing Ratios as Fractions |
| :--- | :--- | :--- | :--- | :--- |
| | | Ratios as Fractions in Simplest Form | Ratio Word Problems |
| Proportions | | Simpifying Rates and Ratios | |
| | www.khanacademy.org | Writing Proportions | Writing Proportions |
| Unit 4 Review PowerPoint | www.stlcc.edu | Understanding Proportions | Proportions 1 |
| Compass Practice | $\underline{\text { http://www.hostos.cuny.edu/oaa/compass/pre-alg_prac10.htm }}$ | Proportions | |

MoSTEMWINs

 linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

Unless otherwise noted this MoSTEMWINs material by St. Louis Community College is licensed under a Creative Commons Attribution 4.0 International License.

Adult Learning Academy
Pre-Algebra Workbook
4.1 Measurement Conversions

Use a reliable website to fill in these conversions. They will be helpful as you solve proportion problems.

1 pound =	ounces
1 gallon $=$	quarts
1 quart $=$	pints
1 quart =	ounces
1 cup $=$	ounces
1 tablespoon =	_ teaspoons
1 teaspoon $=$	_ milliliters
1 kilogram \approx	_ pounds
1 foot $=$	_ inches
1 yard =	_ feet
1 mile $=$	_ feet
1 mile =	\ldots yards
1 inch \approx	_ centimeters

Adult Learning Academy
Pre-Algebra Workbook
4.2 Career Applications: STEM

b. 55:11
c. $168: 14$ \qquad
d. 52:13 \qquad
e. 48:8 \qquad
2. Check the following ratios to see if they are true proportions. Write yes or no on the line provided. (hint: cross multiply and compare products)
a. $50: 30=5: 3$
b. $100: 4=25: 1$ \qquad
c. $16: 15=8: 7$ \qquad
d. $90: 45=9: 5$ \qquad
e. $18: 3=9: 1.5$ \qquad
3. Which car below gets the highest MPG, or miles per gallon?

Honda Civic
Drove 224 miles on 7 gallons

Toyota Corolla
Drove 335 miles on 15 gallons

Ford Fiesta Drove 620 miles on 20 gallons
4. In fluid mechanics, the MACH number is the ratio of the speed of an object to the speed of sound. The speed of sound is about 760 miles per hour.

The Gulfstream G650, one of the fastest civil aircraft ever, flies at 800 miles per hour. What MACH is this? (round to the nearest tenth)
5. It took $31 / 2$ hours to drive 70 miles. About how long will it take to drive 100 miles?
6. It cost $\$ 2100$ for 12 tires. How much would 18 tires cost?
7. Fuel for a 2-cycle engine requires a mixture of gas and oil. If you need 4 ounces of oil for every 128 ounces of gas, how much oil should be added to 32 ounces of gas?
8. The following problems involve carbohydrates, fats, and protein. Use the information given below to complete the proportions.

Carbohydrates $\rightarrow 4$ calories per 1 gram
Fats $\rightarrow 9$ calories per 1 gram
Proteins $\rightarrow 4$ calories per 1 gram
a. 27 calories of fat $=$ \qquad grams
b. 88 calories of protein $=$ \qquad grams
c. 360 calories of carbohydrates $=$ \qquad grams
d. \qquad calories in 12 grams of protein
e. \qquad calories in $1 / 2$ gram of carbohydrates
f. \qquad calories in 16.25 grams of fat
9. To estimate the number of fish in a lake, scientists cannot possibly count every fish. Instead, they use proportions. They cast a net, catch a bunch of fish, and tag each one. Then they release the tagged fish. Later, they come back to the same spot and put out their net again. They count the number of tagged fish in the net, compared to the number of total fish in the net. They use this ratio of tagged fish in the net to set up a proportion:

$$
\frac{\text { tagged fish in net }(2 n d \text { catch })}{\text { total fish in net }(2 n d \text { catch })}=\frac{\text { tagged fish in the area }(\text { from initial catch })}{\text { total fish in the area }}
$$

a. Say that you caught and tagged 200 fish initially. The second time you cast the net, you caught 250 fish, and 25 of them were already tagged. How many fish do you estimate to be in the lake?

b. Say that you caught and tagged 500 fish initially. The second time you cast the net, you caught 200 fish, 10 of whom were tagged. Estimate the population of fish in the lake.

c. A biologist catches and tags 50 frogs in a marsh. The following week, she catches 25 frogs, and two of them have a tag. Estimate the population of frogs in the marsh.
10. Three out of ten people have high blood pressure. In a typical crowd of 400 people, how many would be likely to have high blood pressure?
11. An engineer must make accurate scale drawings before constructing full-size objects. In this drawing, the scale is 1:72. Thus, every inch in the drawing corresponds to 72 inches when the shuttle is built.
a. The nose cone is 1.25 inches long in the drawing. How long is it on the actual shuttle?

b. The actual shuttle has a wingspan of 78 feet. What should the wingspan be in the drawing? (Remember, there are 12 inches in a foot.)
12. Healthcare workers who administer medicine must have a clear understanding of how to compute dosage calculations. A certain medicine must be administered in the ratio of 10 cc per every 25 pounds. Compute the amount of medicine (cc) needed for the following patients. Their weight in pounds is given. Round to the nearest tenth.
a. 50 pounds
b. 100 pounds
c. 200 pounds
d. 8 pounds
e. 135 pounds \qquad
f. 57 pounds \qquad
g. 277 pounds \qquad

Answer Key

1a. 10:1
1b. 5:1
1c. 12:1
1d. 4:1
1e. 6:1

2a. Yes; $50 \times 3=30 \times 5$
2b. Yes; $100 \times 1=4 \times 25$
2c. No; $16 \times 7 \neq 15 \times 8$
2d. No; $90 \times 5 \neq 45 \times 9$
2e. Yes; $18 \times 1.5=3 \times 9$
3. Highest MPG is the Honda Civic

Honda Civic $=224 \div 7=\mathbf{3 2}$ MPG
Toyota Corolla $=335 \div 15=22.3 \mathrm{MPG}$
Ford Fiesta $=620 \div 20=31$ MPG
4. $\frac{760 \mathrm{mph}}{\text { Mach } 1}=\frac{800 \mathrm{mph}}{\mathrm{x}}$; so $760 \mathrm{x}=800$
$x=\frac{800}{760}=$ Mach 1.05
5. $\frac{3.5 \text { hours }}{70 \text { miles }}=\frac{x \text { hours }}{100 \text { miles }}$; so $70 \mathrm{x}=350$
$\mathrm{x}=\mathbf{5}$ hours
6. $\frac{\$ 2100}{12 \text { tires }}=\frac{\$ x}{18 \text { tires }}$; so $12 x=37,800$ $\mathrm{x}=\$ \mathbf{3 , 1 5 0}$
7. $\frac{4 \text { oz oil }}{128 \text { oz gas }}=\frac{x \text { oz oil }}{32 \text { oz gas }}$; so $128 \mathrm{x}=128$
$\mathrm{x}=1 \mathrm{oz}$ oil

8a. $\frac{9 \text { calories }}{1 \text { gram fat }}=\frac{27 \text { calories }}{x \text { grams }} ; \mathbf{x}=3$ grams
8b. $\frac{4 \text { calories }}{1 \text { gram carbs }}=\frac{88 \text { calories }}{x \text { grams }} ; \mathbf{x}=\mathbf{2} \mathbf{~ g r a m s}$
8c. $\frac{4 \text { calories }}{1 \text { gram carbs }}=\frac{360 \text { calories }}{x \text { grams }} ; \mathbf{x}=\mathbf{9 0}$ grams

8d. $\frac{4 \text { calories }}{1 \text { gram protein }}=\frac{x \text { calories }}{12 \text { grams }} ; \mathbf{x}=\mathbf{4 8}$ calories
8e. $\frac{4 \text { calories }}{1 \text { gram carbs }}=\frac{x}{.5 \text { grams }} ; x=2$ calories
8f. $\frac{9 \text { calories }}{1 \text { gram fat }}=\frac{\mathrm{x}}{16.25 \text { grams }} ; \mathbf{x}=\mathbf{1 4 6 . 2 5}$ calories

9a. $\frac{25 \text { tagged }}{250 \text { total }}=\frac{200 \text { tagged }}{x \text { total }}$; so $25 \mathrm{x}=200(250)$
$\mathbf{x}=50,000 \div 25=\mathbf{2 0 0 0}$ total fish in the area

9b. $\frac{10 \text { tagged }}{200 \text { total }}=\frac{500 \text { tagged }}{x \text { total }}$; so $10 x=200(500)$
$\mathbf{x}=100,000 \div 10=\mathbf{1 0 , 0 0 0}$ total fish in the area
9c. $\frac{2 \text { tagged }}{25 \text { total }}=\frac{50 \text { tagged }}{x \text { total }}$; so $2 \mathrm{x}=25(50)$
$x=625$ total frogs in the area
10. $\frac{3 \text { high } \mathrm{BP}}{10 \text { total }}=\frac{\mathrm{x} \text { high } \mathrm{BP}}{400 \text { total }}$; so $10 \mathrm{x}=1200$
$\mathrm{x}=120$ people with high BP

11a. $\frac{1 \text { inch }}{50 \text { miles }}=\frac{3 \text { inches }}{x \text { miles }} ; \mathbf{x}=\mathbf{1 5 0}$ miles
11b. think: $\frac{1}{2}$ of 50 miles $=25$ miles
11c. $\frac{1 \text { in. paper }}{72 \text { in. shuttle }}=\frac{1.25 \text { in. paper }}{x \text { in. shuttle }}$; so $\mathrm{x}=72(1.25)$
$\mathbf{x}=90$ inches
11d. $\frac{1 \text { in. paper }}{72 \text { in. shuttle }}=\frac{x \text { in. paper }}{78 \times 12 \text { in. shuttle }} ;$ so $72 \mathrm{x}=936$ $x=13$ inches on paper

ANSWER KEY (CONT.)

12a. $\frac{10 \mathrm{cc}}{25 \mathrm{lbs} .}=\frac{\mathrm{x} \mathrm{cc}}{50 \mathrm{lbs} .}$; so $10(50)=25 \mathrm{x}$

$$
x=20 c c
$$

12b. $\frac{10 \mathrm{cc}}{25 \mathrm{lbs} .}=\frac{\mathrm{x} \mathrm{cc}}{100 \mathrm{lbs} .}$; so $10(100)=25 \mathrm{x}$
$\mathrm{x}=40 \mathrm{cc}$
12c. $\frac{10 \mathrm{cc}}{25 \mathrm{lbs} .}=\frac{\mathrm{x} \mathrm{cc}}{200 \mathrm{lbs} .}$; so $10(200)=25 \mathrm{x}$
$\mathrm{x}=\mathbf{8 0} \mathrm{cc}$
12d. $\frac{10 \mathrm{cc}}{25 \mathrm{lbs}}=\frac{\mathrm{x} \mathrm{cc}}{8 \mathrm{lbs} .}$; so $10(8)=25 \mathrm{x}$
$\mathrm{x}=3.2 \mathrm{cc}$
12e. $\frac{10 \mathrm{cc}}{25 \mathrm{lbs} .}=\frac{\mathrm{x} \mathrm{cc}}{135 \mathrm{lbs} .}$; so $10(135)=25 \mathrm{x}$ $\mathrm{x}=54 \mathrm{cc}$

12f. $\frac{10 \mathrm{cc}}{25 \mathrm{lbs}}=\frac{\mathrm{x} \mathrm{cc}}{57 \mathrm{lbs}}$; so $10(57)=25 \mathrm{x}$ $\mathrm{x}=22.8 \mathrm{cc}$

12g. $\frac{10 \mathrm{cc}}{25 \mathrm{lbs} .}=\frac{\mathrm{x} \mathrm{cc}}{277 \mathrm{lbs} .}$; so $10(277)=25 \mathrm{x}$ $\mathrm{x}=110.8 \mathrm{cc}$

Resources

Image used in question 1

Gears is available in the public domain under CC0 Public Domain
Images used in question 3
Honda Civic 1.6 i-DTEC Elegance (IX, Facelift) by © M 93 is licensed under CC-BY-SA-3.0 (DE)
2014 Toyota Corolla 1.8 LE (ZRE172), front left by Mr.choppers is licensed under CC BY-SA 3.0
2009-2010 Ford Fiesta (WS) Zetec 3-door hatchback 01 is available in the public domain

Image used in question 9a
Lake Washington Ship Canal Fish Ladder pamphlet - male freshwater phase Steelhead is available in the public domain under; image cropped and resized

Image used in question 9b
Pickerel Frog by Brian Gratwicke is licensed under CC BY 2.0; cropped from original work
Image used in question 11
Elevations of the Space Shuttle Launch Stack Assembly is available in the public domain

MoSTEMWINs
This product is 100% funded by the MoSTEMWINs $\$ 19.7$ million grant from the U.S. Department of Labor Employment and Training Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

Unless otherwise noted this MoSTEMWINs material by St. Louis Community College is licensed under a Creative Commons Attribution 4.0 International License.

