***Notice...there are formulas on the bottom of this review sheet.
15 is what percent of 40 ?

72 is 41% of what?

Elijah ate 71% of his box of Raisin Bran. The box contains 28 ounces when it is full. How many ounces of raisin bran did Elijah eat?
(A little tougher) Bernie lost 14% of his body weight and now weighs 180.6 pounds. What was his weight before the diet?

A friend of mine used to make $\$ 48,500$ per year, and just received a raise and now makes $\$ 51,000$ per year. What is the percent of increase?

You invest $\$ 3,000$ into an account that pays 7%, compounded monthly. How much would the investment be worth in 40 years?

You invest $\$ 3,000$ into an account that pays 7%, compounded continuously. How much would the investment be worth in 40 years?

You invest $\$ 6,000$ into an account that pays 6%, compounded quarterly. How much would the investment be worth in 20 years?

You buy a house for $\$ 200,000$ and make a down payment of $\$ 30,000$ and need to finance the rest at a 5% annual interest rate. What would your monthly payments be if you set it up for 15 years?

You buy a car for $\$ 13,000$ and make a down payment of \$1,000 and finance the rest at a 6% annual interest rate. What would your monthly payments be if you paid it off in 3 years?

Mandy borrowed \$1,200 from her aunt. Her aunt charged simple interest at a 5\% annual rate and asked to be paid back in 3 years. How much interest did Mandy have to pay?

You borrow $\$ 800$ from a cousin and have to pay her back $\$ 1,016$ in 3 years.
If she is using simple interest, what interest rate is she charging?

Simple Interest: $\quad \mathbf{I}=$ Prt (P is principal, r is the annual interest rate as a decimal, t is time in years)

Calculating the amount for compound interest paid n times per year: $A=P\left(1+\frac{r}{n}\right)^{n t}$

Calculating the amount for compounding continuously: $A=P e^{r t}$

Calculating present value with compound interest, when you 'want' to have A dollars in the future:

$$
P=\frac{A}{\left(1+\frac{r}{n}\right)^{n t}}
$$

Loan Payment Formula (for homes, cars, etc.) You can also use the APPS on your Graphing Calculator.

$$
P M T=\frac{P\left(\frac{r}{n}\right)}{\left[1-\left(1+\frac{r}{n}\right)^{-n t}\right]}
$$

