\qquad

Length	Weight
$\begin{aligned} & 1 \mathrm{ft}=12 \mathrm{in} \\ & 1 \mathrm{yd}=3 \mathrm{ft}=36 \mathrm{in} \\ & 1 \mathrm{rod}(\mathrm{rd})=16 \frac{1}{\mathrm{ft}} \\ & 1 \mathrm{mi}=5280 \mathrm{ft}=1760 \mathrm{yd} \end{aligned}$	$\begin{aligned} & 1 \mathrm{lb}=16 \mathrm{oz} \\ & 1 \mathrm{ton}=2000 \mathrm{lb} \end{aligned}$
Liquid Capacity	Area
$\begin{aligned} & 1 \text { tablespoon }(\mathrm{T})=3 \text { teaspoons }(\mathrm{t}) \\ & 1 \text { fluid ounce }(\mathrm{fl} \mathrm{oz})=2 \mathrm{~T} \\ & 1 \text { measuring cup }=8 \mathrm{fl} \mathrm{oz} \\ & 1 \mathrm{pint}(\mathrm{pt})=2 \mathrm{cups}=16 \mathrm{fl} \mathrm{oz} \\ & 1 \mathrm{qt}=2 \mathrm{pt} \\ & 1 \mathrm{gal}=4 \mathrm{qt} \end{aligned}$	$\begin{aligned} & 1 \mathrm{sq} \mathrm{ft}=144 \mathrm{sq} \mathrm{in} . \\ & 1 \mathrm{sq} \mathrm{yd}=9 \mathrm{sq} \mathrm{ft}=1296 \mathrm{sq} \mathrm{in} . \\ & 1 \mathrm{sq} \mathrm{rod}=30.25 \mathrm{sq} y \mathrm{yd} \\ & 1 \text { acre }=160 \mathrm{sq} \text { rod }=4840 \mathrm{sq} \mathrm{yd} \\ & 1 \text { acre }=43,560 \text { sq ft } \\ & 1 \mathrm{sq} \mathrm{mi}=640 \text { acres } \end{aligned}$
Volume	Time
$\begin{aligned} & 1 \mathrm{cu} \mathrm{ft}=1728 \mathrm{cu} \text { in. } \\ & 1 \mathrm{gal}=231 \mathrm{cu} \mathrm{in} . \\ & 1 \mathrm{bu}=2150.42 \mathrm{cu} \text { in. } \\ & 1 \mathrm{pt}=28.875 \mathrm{cu} \text { in. } \\ & 1 \mathrm{cu} \mathrm{yd}=27 \mathrm{cu} \mathrm{ft}=46,656 \mathrm{cu} \mathrm{in} . \\ & 1 \mathrm{cu} \mathrm{ft} \approx 7.48 \mathrm{gal} \\ & 1 \mathrm{fl} \mathrm{oz}=1.805 \mathrm{cu} \text { in. } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~min}=60 \mathrm{sec} \\ & 1 \mathrm{hr} \text { or } 1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{sec} \\ & 1 \text { day }=24 \mathrm{hr} \end{aligned}$

$a_{n}=a_{1}+d(n-1)$
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{n}=a_{1} r^{n-1}$
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Simple Interest: I = Prt
Calculating the amount for compound interest paid n times per year: $A=P\left(1+\frac{r}{n}\right)^{n t}$
Calculating the amount for compounding continuously: $A=P e^{r t}$
Loan Payment Formula (for homes, cars, etc.) You can also use the APPS on your Graphing Calculator.

$$
P M T=\frac{P\left(\frac{r}{n}\right)}{\left[1-\left(1+\frac{r}{n}\right)^{-n t}\right]}
$$

Metric-Metric	Metric-English
	Length
$\begin{aligned} & 1 \mathrm{~cm}=10 \mathrm{~mm} \quad(10 \text { millimeters }) \\ & 1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm} \\ & 1 \mathrm{~km}=1000 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \mathrm{in}=2.54 \mathrm{~cm} \\ & 1 \mathrm{ft}=30.48 \mathrm{~cm} \\ & 1 \mathrm{yd}=0.9144 \mathrm{~m} \\ & 1 \mathrm{mi} \approx 1.6093 \mathrm{~km} \end{aligned}$
Weight/Mass	
$\begin{aligned} & 1 \mathrm{mg}=1000 \mu \mathrm{~g} \quad(1000 \text { micrograms }) \\ & 1 \mathrm{~g}=1000 \mathrm{mg} \\ & 1 \mathrm{~kg}=1000 \mathrm{~g} \\ & 1 \text { metric ton }=1000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 1 \mathrm{oz}=28.35 \mathrm{~g} \\ & 1 \mathrm{lb}=0.4536 \mathrm{~kg} \\ & 1 \mathrm{~T}=907.2 \mathrm{~kg} \end{aligned}$
Area	
$1 \mathrm{ha}=10,000 \mathrm{sq} \mathrm{m}\left(\mathrm{m}^{2}\right)$	$\begin{aligned} & 1 \mathrm{sq} \mathrm{in.}\left(\mathrm{in.}^{2}\right) \approx 6.452 \mathrm{sq} \mathrm{~cm}\left(\mathrm{~cm}^{2}\right) \\ & 1 \mathrm{sqft}\left(\mathrm{ft}^{2}\right) \approx 0.0929 \mathrm{sq} \mathrm{~m}\left(\mathrm{~m}^{2}\right) \\ & 1 \mathrm{sq} \mathrm{yd}\left(\mathrm{yd}^{2}\right) \approx 0.836 \mathrm{sq} \mathrm{~m} \end{aligned}$
Volume	
$\begin{aligned} & 1 \mathrm{~mL}=1000 \mu \mathrm{~L} \\ & 1 \mathrm{cu} \mathrm{~cm}\left(\mathrm{~cm}^{3}\right)=1 \mathrm{~mL} \text { (1 milliliter) } \\ & 1 \text { liter }(\mathrm{L})=1000 \mathrm{cu} \mathrm{~cm} \end{aligned}$	$\begin{aligned} & 1 \mathrm{cu} \mathrm{in.}\left(\text { in. }{ }^{3}\right) \approx 16.387 \mathrm{cu} \mathrm{~cm}\left(\mathrm{~cm}^{3}\right) \\ & 1 \mathrm{cu} \mathrm{yd}\left(\mathrm{yd}^{3}\right) \approx 0.765 \mathrm{cu} \mathrm{~m}\left(\mathrm{~m}^{3}\right) \\ & 1 \text { fluid ounce } \approx 29.574 \mathrm{~mL} \\ & 1 \mathrm{qt} \approx 0.946 \text { liter } \\ & 1 \text { gal } \approx 3.785 \text { liters } \end{aligned}$

$$
A=A_{0} 2^{\frac{t}{d}} \quad A_{0} e^{k t} \quad A=A_{0}\left(\frac{1}{2}\right)^{t / h}
$$

Volume of Cylinder: $V=\pi r^{2} h$
Volume of Cone: $V=\frac{1}{3} \pi r^{2} h$
Volume of Pyramid: $V=\frac{1}{3} B h$
Area of Trapezoid: $\boldsymbol{A}=\left(\frac{b_{1}+b_{2}}{2}\right) \boldsymbol{h}$

