Fisheries Management Law \& Economics

Traditional Fisheries Management
Joel Markis
Asst Professor
Fisheries Technology
University of Alaska Southeast

Fisheries Technology

Outline

Management

Informed + Uninformed

Stock Assessments
Fishery Dependent
Fishery Independent

Stock Assessments

Population (How Many)
Life History Data (size, weight, age, sex)
Catch Information (fish tickets)
Salmon Example

2016 Preliminary Alaska Commercial Salmon Harvest - Blue Sheet The Blue Sheet reports cumulative salmon harvest during the commercial fishing season in thousands of fish. Historically, this information was updated each Friday between mid-May and September. Beginning with the 2013 season, these harvest estimates will be updated twice daily. Please note, inseason harvest estimates published in this report are preliminary and subject to change. Confidential catch information is not included in these cumulative totals. For more information on the Blue Sheet, inseason summaries, and harvest timing charts please see our Blue Sheet, Inseason Summary, and Harvest Timing Charts Overview page.									
Inseason Salmon Summary \| Inseason Harvest Timing Charts Harvest in									
Region	Area	District or Fishery	Fishery Start Date	Chinook	Chum	Coho	Pink	Sockeye	Total
Arctic-YukonKuskokwim (AYK) Region	Kotzebue			-		-		-	
	Kotzebue Total			-	-	-	-	-	
	Kuskokwim	Kuskokwim Bay		-	-	-	-	-	-
		Kuskokwim River		-	-	-	-	-	-
	Kuskokwim Total			-	-	-	-	-	
	Norton Sound			-	-	39	189	2	230
	Norton Sound Total			-	-	39	189	2	230
	Yukon River	Lower Yukon River	Jun 7	-	762	23	127	-	912
		Upper Yukon River		-	5	-	-	-	
	Yukon River Total			-	767	23	127	-	917
Arctic-Yukon-Kuskokwim (AYK) Region Total				-	767	62	316	2	1,147
		Egegik District	Jun 1	-	-	-	-	8,518	8,518
		Naknek- Kvichak District	Jun 1	1	24	1	10	13,627	13,663
	Bristol Bay	Nushagak District	Jun 1	23	528	76	531	8,013	9,171
		Togiak District	Jun 1	4	179	3	209	608	1,003
		Ugashik District	Jun 1	1	-	-	-	6,795	6,796
	Bristol Bay Total			29	731	80	750	37,561	39,151

Student Learning Outcomes

- Summarize fisheries management strategies in data limited and data rich situations
- Compare and contrast fishery dependent and independent types of stock assessments
- Describe population or abundance estimates and their role in fishery assessments
- Summarize the importance of biological information in fishery stock assessment and provide examples of the types of information collected
- Describe the various types of catch information that is used in fishery stock assessments
- Summarize the way salmon assessments are conducted in Alaska

Recap

Traditional Fisheries Management

 Population DynamicsCarrying Capacity
Traditional Fisheries Management
MSY / Surplus Production
Quota
Legislation
Closures
Restrictions
Market Based Management

1 Fish 2 Fish Summary

- It put fish populations at too much risk;
- It did not account for variability in population productivity (loss of river habitat for salmon)
- It did not account for species other than the focus of the fishery (bears, seals, etc.)
- Ht considered only the benefits, not the costs, of fishing
- It was sensitive to political pressure

What do we need to manage a Fishery?

We have a bag of tools now what?

- Without materials tools won't build anything
- Data are the materials managers need to "build" or manage a fishery

Information / Data

- How Many
- What Kind
- How Big
- How Old
- Healthy

Types of Fishery Management

Uninformed - data limited Informed

- MSY / Surplus Production
- Quotas
- Closures
- Legislation
- Gear Restrictions
- Which category do these fall under?

Data Limited Management

It can be too expensive or not feasible to collect information or conduct stock assessments on every population.

In many cases a conservative approach is taken and the stocks are monitored

- Quotas*
- Closures
- Legislation
- Gear Restrictions
*Typically harvest is set low or there are severe gear restrictions

Informed Fisheries Management

With information we can set limits

- Maximum Sustainable Yield
- Total Allowable Catch
- Optimum Sustainable Yield
- Guide Harvest Level
-Etc.....
- These are all numbers or targets that need data to inform.
- How much can we take??

Yield Models

- In order to manage a fishery for MSY we need to define K and $1 / 2 \mathrm{~K}$

Maximum Sustainable Yield $=\mathrm{K} / 2$

Defining K

Carrying Capacity (K) is intrinsically difficult to define

- The target is always moving based on:
- Survival rate
- Mortality
- Habitat characteristics
- Environmental change
- Anthropogenic factors
- Exploitation, Bycatch, Pollution
- Annual Variability

Self Check

- Carrying capacity is relatively easy to define once we have the appropriate information
- True
- False
- In data limited situations managers typically liberalize the fishery allowing for larger catches
- True
- False

Stock Assessments

- Assessing a Fishery Stock
- COLLECT DATA
- A way to describe the health, condition, and abundance of fishery stocks
- Collect, Analyze and Report fishery information
- Information on: A B C's
- Abundance - Population size
- Biology - Life History data
- Catch - Removals due to humans

Types of Assessments

- Fishery Independent
- Fishery Dependent

Information

Fishery Independent

Management agency conducts
survey

- Expensive \$\$\$
- More Systematic/Scientific
- Repeatable and comparable
- Allow for more biological information to be collected

National Marine Fisheries Service Crab Surveys

Fishery Independent Survey

- Chartered vessel to conduct systematic trawl surveys

Fishery Dependent

Dependent on the fishery to collect data
Collect data about fisherman's catch

- Less expensive
- Typically not systematic
- Can be biased
- Typically CPUE

Abundance - Population Size

Census - A census is the procedure of systematically acquiring and recording information about the members of a given population. It is a regularly occurring and official count of a particular population - US Census, Draining Lakes
Index - An index is an indirect shortcut derived from and pointing into, a greater volume of values, data, information or knowledge.

- This is an Estimate
- Almost all data are estimates

Variety of ways to estimate Abundance

Depends on:

- Species
- Salmon vs Halibut, Crab, Herring, Scallops, Shrimp, Urchins, Cucumber, Eulachon
- Habitat
- Lakes, Rivers, Ocean Deep vs. Shallow
- Life history
- Migratory, Range size,
- Life stage
- Juvenile vs. adult

Species

- Salmon
- Halibut
- Urchins

Abundance estimates by Spp.

- Halibut/Sablefish- Longline CPUE
- Crab - Pot Survey/Trawl CPUE
- Walleye/Cod - Trawl Biomass Acoustic?
- Salmon - Many
- Shrimp - Trawl/Pot Biomass/CPUE
- Scallops - Dredge

Cucumber/Urchin - Dive Survey

- Herring - Dive Survey for egg deposition, Aerial, Sonar

Catch per Unit Effort CPUE

- What can CPUE Tell us?
- High CPUE = ?
- Low CPUE = ?
- Change from High to Low CPUE = ?

Boom \& Bust fisheries \& CPUE

- CPUE in these fisheries is usually high in early part of fishery
- Attracts more fishing pressure, CPUE levels off and overall catch increases
- Continue fishing and see CPUE decline and catch decline
- This indicates.....
- To remedy must remove fishing pressure until CPUE can return to earlier days of fishery
- Seem to simple?

Habitat

- Deep Ocean
- Rivers
- Lakes

- Migratory

Life History

- Range size

Life Stage

- Juvenile
- Adult

Self Check

- A census is a an indirect shortcut derived from and pointing into, a greater volume of values
- True
- False
- How might you conduct an abundance estimate for Weathervane Scallops
- Pot Survey
- Mark Recapture
- Trawl Survey
- Dredge Survey
- Acoustic Survey
- Dive Survey

Biological information

- Size
- Weight
- Size weight ratio?
- Age
- Age composition
- Length at age?
- Sex composition
- Fecundity - is the actual reproductive rate of an organism or population, measured by the number of gametes (eggs), seed set, or asexual propagules.

Fish Size

- Length defines legal size for harvest
- Relative number of fish in certain size categories
- Reproductively Mature
- Determine Standing stock (metric tons)
- L/W History - Ponds

Length \& Weight

Provide information that are cornerstones of fisheries research and management

- Estimates of:
- Growth
- Biomass of Standing Crop
- Production (tissue Growth $\mathrm{kg} / \mathrm{ha} / \mathrm{yr}$)

AGE

- How old is the Fish
- How old can it get

Aging Scales

- Scales are like rings on a tree
- Fish grow faster in summer than winter
- Faster in Salt also
- Scales go on scale cards
- Use microfiche machine to read

Scale Jail

Otoliths

Otoliths and fisheries science

- Unique properties:
- Otolith growth is continual
- Lack of resorption
- Complete growth and environmental record
- Allows scientist to:
- Determine temperature (Sr:Ca)
- Determine salinity throughout life history
- Anadromous migrations

Other Species?

- Rockfish
- Sharks
- Octopus
- Lingcod - Crabs
- Shrimp
- Clams

Age Structure

- Age Structure of Imaginary Catch

Age Structure

- Can see pulses or gaps in recruitment
- 11 - 15 yr good age class

Age Structure

Chinook Salmon proportional age class

- Solid 4-Ocean
- Triangle \& Dotted line
- 3-Ocean
- Square \& Dashed
- 2-Ocean
- More young fish

Sex Composition

- Greenland Halibut

Fecundity

Figure 4. Fecundity-length relationship in 1927 and 1973, Area 3. The data from 1915 are presented for comparison. Standard lengths measured in 1915 were converted to fork lengths.

Self Check

- All of the following are types of biological information that are collected that are important in managing fisheries
- Age
- Sex
- Length
- Abundance
- Weight
- One way to measure fecundity or the reproductive potential of an individual would be to count eggs
- True
- False

Catch Data

Dockside monitoring

- Records commercial catch receipts (Fish Tickets)
- Measure of commercial landings
- Biological samples of the length, sex, and age of fish

Logbooks

- Records location, gear, and catch

Observers

- Collect data on catch, bycatch, discards
- Biological samples of the length, sex, and age of fish

Recreational/Subsistance Sampling

- Mail \& Telephone interview surveys
- Dockside sampling

Catch Data

- Fisherman Sell Fish to Canaries
- Fish tickets
- Electronic fish tickets
- This tells us how many fish are removed
- What about Bycatch?

NOAA's Catch Accounting

Have Data Now What?

Abundance Data
Biological Data
Survey/Fishery Birth

Death
Growth Recruitment

Stock Status Fishing limits Allowable Catch

Have Data Now What?

- Stock assessment information is typically put into some kind of model
- These models vary widely
- Incorporate different variables
- Some models change from year to year

Abundance Data

Stock Assessment Models

Simple to complex

- Population Model (1)
- Abundance, mortality, growth, reproduction, movement
- Observational Model (2)
- Predictions from population model on things measured
- Abundance, catch, size, age composition
- Statistical Model (3)
- Compares predictions to actual data and makes adjustements

Stock Assessments

- NMFS prepares SAFE reports
- (Stock Assessment and Fishery Evaluation) Reports
- Intended to summarize the best available scientific information concerning the past, present, and future condition of the stocks, marine ecosystems, and fisheries
-"The Guidelines for Fishery Management Plans published by the National Marine Fisheries Service require that a stock assessment and fishery evaluation report (SAFE) be prepared and reviewed annually for each fishery management plan"

Self Check

- What is the next step after a stock assessment and before catch limits can be set?
- Fishery Dependent Survey
- Catch Recording
- Statistical Modeling
- Habitat Classification
- Information on the ABC's of a fishery is critical in conducting an accurate assessment and determining catch limits
- True
- False

Salmon Assessment

Salmon are different - come home
Most salmon fisheries in the state are managed for escapement Escapement Goals (target just like MSY)

- Estimation of escapement
- Estimation of harvest (also called "catch")
- Estimation of age composition

What a Manager Needs

Accurate assessment of the Stock (health of Fishery)

- Three components of stock assessments:
- Estimation of escapement (abundance)
- Estimation of age composition (biology)
- Estimation of harvest (catch)
- All have uncertainty, some more than others
- Can assess stock with just one, more are better

Salmon Assessment

Estimation of escapement... Abundance

- Can be measured as total (Census) or index
- Best = weirs, towers, video = counts of true (?!) escapement
- Good = sonar, mark-recapture = estimates of true escapement
- OK = aerial, foot, snorkel surveys = index of escapement

Salmon Assessment

Estimation of Age Composition... Biology

- Salmon scales and otoliths primary means of estimation of AGE
- Tells us Year Class
- Years Fresh \& Salt

Salmon Assessment

Estimation of Harvest or landings.... Catch

Fish Tickets

- This is a receipt of the fish sold from the fisherman to the processor
- ADF\&G receives a copy (most of the time)
- Now paper, but moving to eLandings

2016 Preliminary Alaska Commercial Salmon Harvest - Blue Sheet Havent 1 Thouranat of fiah									
Region	Area	District or Fishery	Fishery Start Date	Chinook	Chum	Coho	Pink	Sockeye	Total
Arctic-Yukon-Kuskokwim (AYK) Region	Kotzebue			-	-	-	-	-	-
	Kotzebue Total			-	-	-	-	-	-
	Kuskokwim	Kuskokwim Bay		-	-	-	-	-	-
	Kuskokwim River			-	-	-	-	-	-
	Kuskokwim Total Norton Sound			-	-	-	-	-	-
				-	-	39	189	2	230
	Norton Sound Total			-	-	39	189	2	230
	Yukon River	Lower Yukon River	Jun 7	-	762	23	127	-	912
		Upper Yukon River		-	5	-	-	-	5
	Yukon River Total			-	767	23	127	-	917
Arctic-Yukon-Kuskokwim (AYK) Region Total				-	767	62	316	2	1,147
Central Region	Bristol Bay	Egegik District	Jun 1	-	-	-	-	8,518	8,518
		Naknek-Kvichak District	Jun 1	1	24	1	10	13,627	13,663
		Nushagak District	Jun 1	23	528	76	531	8,013	9,171
		Togiak District	Jun 1	4	179	3	209	608	1,003
		Ugashik District	Jun 1	1	-	-	-	6,795	6,796
	Bristol Bay Total			29	731	80	750	37,561	39,151
	Upper Cook Inlet	Central District	May 30	7	121	102	371	2,334	2,935
		Northern District	May 30	2	3	23	8	48	84
	Lower Cook Inlet	Eastern District	May 15	-	-	-	-	61	61
		Kamishak Bay District		-	3	-	-	61	64
		Outer District		-	56	-	5	-	61
		Southern District	Jun 2	1	2	1	89	94	187
	Cook Inlet Total			10	185	126	473	2,598	3,392
	Prince William Sound	$\|$Bering River Drift Coghill District Drift	May 23	-	-	-	-	9	9
			May 30	-	1,834	-	9	67	1,910
		Copper River Drift	May 16	12	6	40	35	1,137	1,230
		Eshamy District Drift/Set	May 30	-	98	-	60	656	814
		Montague District Drift	May 30	-	200	-	21	3	224
		PWS General Seine	Jun 2	-	344	20	7,856	62	8,282
		PWS Hatchery	Jun 2	-	942	-	3,497	-	4,439
		Unakwik District Drift	Jun 16	-	1	-	-	-	1

Fishery Assessments Take Away

- With less information we have to be more conservative
- As we build our knowledge base we become more confident in our estimates

Added Information

Self Check

- Since salmon return to their natal streams we estimate instead of abundance
- Mortality
- Catch
- Escapement
- Outmigration
- With less information about a fishery we have to be more \qquad when setting catch limits
- Liberal
- Conservative

Summary

Management

> Informed + Uninformed

Stock Assessments
Fishery Dependent
Fishery Independent

Stock Assessments

Population (How Many)
Life History Data (size, weight, age, sex)
Catch Information (fish tickets)
Salmon Example

Readings

- 2015 Crab SAFE report

Stock Assessment and Fishery Evaluation Report
 for the
 KING AND TANNER CRAB FISHERIES
 of the
 Bering Sea and Aleutian Islands Regions

2015 Final Crab SAFE

Compiled by
The Plan Team for the King and Tanner Crab Fisheries of the Bering Sea and Aleutian Islands

With Contributions by
K. Bush, M. Dorn, G. Eckert, H. Fitch, R.J. Foy,

