

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Disclaimer

This workforce product was funded by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The U.S. Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.

Manufacturing
 Processes,Equations \& Equipment Operation

This book should come to every
Fabrication
class you have.
Reference materials for calculating weights, flat

Every day! patterns, bending, cutting, drilling, manufacturing parts and running equipment.

THE SCIENCE OF SUCCESS
INCH/METRIC TAP DRILL SIZES \& DECIMAL EQUIVALENTS

MILLIMETER - INCH CONVERSION CHART

mm	decimal	inch									
1	0.015	1/64	33	1.2992		65	2.5591		97	3.8189	
	0.031	1/32		1.312	1-5/16		2.562	2-9/16		3.843	3-27/32
	0.0394	1/16	34	1.3386			2.593	2-19/32	98	3.8583	3-7/8
	0.062			1.343	$\begin{gathered} 1-11 / 32 \\ 1-3 / 8 \end{gathered}$	66	2.5984			3.875	
2	0.0787			1.375			2.625	2-5/8	99	3.8976	
	0.093	3/32	35	1.3780		67	2.6378			3.906	3-29/32
3	0.1181			1.406	1-13/32		2.656	2-21/32	100	3.9370	$\begin{aligned} & 3-15 / 16 \\ & 3-31 / 32 \end{aligned}$
	0.125	1/8	36	1.4173	1-7/16	68	2.6772			3.968	
	0.156	5/32		1.437			2.687	2-11/16	101	3.9764	
4	0.1575		37	1.4567		69	2.7165			4.000	4
	0.187	3/16		1.468	1-15/32		2.718	$\begin{gathered} 2-23 / 32 \\ 2-3 / 4 \end{gathered}$	102	4.0157	
5	0.1969		38	1.4961			2.750		-	4.0310	4-1/32
	0.218	7/32		1.500	1-1/2	70	2.7559		103	4.0551	
6	0.2362			1.531	1-17/32		2.781	2-25/32		4.0620	$\begin{aligned} & 4-1 / 16 \\ & 4-3 / 32 \end{aligned}$
	0.250	1/4	39	1.5354		71	2.7953			4.0930	
7	0.2756			1.562	1-9/16		2.812	2-13/16	104	4.09454.125	
	0.281	9/32	40	1.5748		72	2.8346				4-1/8
	0.312	5/16		1.593	1-19/32		2.843	2-27/32	105	4.1339	
8	0.3150		41	1.6142		73	2.8740			4.156	4-5/32
	0.343	11/32		1.625	1-5/8		2.875	$\begin{gathered} 2-7 / 8 \\ 2-29 / 32 \end{gathered}$	106	4.1732	
9	0.3543		42	1.6535			2.906			4.187	4-3/16
	0.375	3/8		1.656	1-21/32	74	2.9134		107	4.2126	
10	0.3937			1.687	1-11/16		2.9370	2-15/16		4.218	$\begin{gathered} 4-7 / 32 \\ 4-1 / 4 \end{gathered}$
	0.406	13/32	43	1.6929		75	2.9528			$\begin{gathered} 4.250 \\ 4.2520 \end{gathered}$	
11	0.4331			1.718	1-23/32		2.968	2-31/32	108		
	0.437	$\begin{gathered} 7 / 16 \\ 15 / 32 \end{gathered}$	44	1.7323		76	2.9921			4.281	4-9/32
	0.468			1.750	1-3/4		3.000	3	109	4.2913	
12	0.4724		45	1.7717			3.0310	3-1/32		4.312	4-5/16
	0.500	1/2		1.781	1-25/32	77	3.0315	3-1/16	110	$\begin{gathered} 4.3307 \\ 4.343 \end{gathered}$	
13	0.5118		46	1.8110			3.0620	3-1/16			4-11/32
	0.531	17/32		1.812	1-13/16	78	3.0709	-1/16	111	4.3701	
14	0.5512			1.843	1-27/32		3.0930	3-3/32		4.375	$\begin{gathered} 4-3 / 8 \\ 4-13 / 32 \end{gathered}$
	0.562	9.16	47	1.8504		79	3.1102	$3-1 / 8$		4.406	
15	0.5906			1.875	1-7/8		3.125		112	4.4094	
	0.593	$\begin{gathered} 19 / 32 \\ 5 / 8 \end{gathered}$	48	1.8898		80	3.1496			4.437	4-7/16
	0.625			1.906	1-29/32		3.156	$\begin{aligned} & 3-5 / 32 \\ & 3-3 / 16 \end{aligned}$	113	4.4488	
16	0.6299		49	1.9291			3.187			4.468	4-15/32
	0.656	21/32		1.9370	1-15/16	81	3.1890		114	4.4882	
17	0.6693			1.968	1-31/32		3.218	3-7/32		4.500	4-1/2
	0.687	11/16	50	1.9685		82	3.2283		115	4.5276	
18	0.7087			2.000	2		3.250	3-1/4		4.531	$\begin{gathered} 4-17 / 32 \\ 4-9 / 16 \end{gathered}$
	0.718	23/32	51	2.0079		83	3.2677			4.562	
19	0.7480			2.0310	2-1/32		3.281	3-9/32	116	4.56694.593	
	0.750	$\begin{gathered} 3 / 4 \\ 25 / 32 \end{gathered}$	52	2.0472		84	3.3071				4-19/32
	0.781			2.0620	2-1/16		3.312	3-5/16	117	4.6063	
20	0.7874	13/16	53	2.0866			3.343	3-11/32		4.625	4-5/8
	0.812			2.0930	2-3/32	85	3.3465		118	4.6457	
21	0.8268			2.125	2-1/8		3.375	3-3/8		4.656	4-21/32
	0.843	27/32	54	2.1260		86	3.3858		119	4.6850	
22	0.8661			2.156	2-5/32		3.406	3-13/32		4.687	4-11/16
	0.875	7/8	55	2.1654		87	3.4252			4.718	4-23/32
23	0.9055			2.187	2-3/16		3.437	3-7/16	120	4.7244	
	0.906	29/32	56	2.2047		88	3.4646			4.750	4-3/4
	0.937	15/16		2.218	2-7/32		3.468	3-15/32	121	4.7638	
24	0.9449		57	2.2441			3.500	3-1/2		4.781	4-25/32
	0.968	31/32		2.250	2-1/4	89	3.5039		122	4.8031	
25	0.9843			2.281	2-9/32		3.531	3-17/32		4.812	4-13/16
	1.000	1	58	2.2835		90	3.5433		123	4.8425	
26	1.0236			2.312	2-5/16		3.562	3-9/16		4.843	4-27/32
	1.0310	1-1/32	59	2.3228		91	3.5827			4.875	4-7/8
	1.0620	1-1/16		2.343	2-11/32		3.593	3-19/32	124	4.8819	
27	1.0630		60	2.3622		92	3.6220			4.906	4-29/32
	1.0930	1-3/32		2.375	2-3/8		3.625	3-5/8	125	4.9213	
28	1.1024		61	2.4016			3.656	3-21/32		4.9370	4-15/16
	1.125	1-1/8		2.406	2-13/32	93	3.6614		126	4.9606	
29	1.1417			2.437	2-7/16		3.687	3-11/16		4.968	4-31/32
	1.156	1-5/32	62	2.4409		94	3.7008		127	5.000	5
30	1.1811			2.468	2-15/32		3.718	3-23/32			
	1.187	1-3/16	63	2.4803		95	3.7402				
	1.218	1-7/32		2.500	2-1/2		3.750	3-3/4			
31	1.2205		64	2.5197		96	3.7795				
	1.250	1-1/4		2.531	2-17/32		3.781	3-25/32			
32	1.2598						3.812	3-13/16			
	1.281	1-9/32									

Dial Caliper Reading

Dial Caliper Reading

Dial Caliper Reading

Dial Caliper Reading

The Fine Art of Sheet

 http://www.pa-international.com.au/pa/indexbaa2.htThese pages deleted due to 0

The Fine Art of Sheet

 http://www.pa-international.com.au/pa/indexbaa2.htThese pages deleted due to 0

The Fine Art of Sheet

 http://www.pa-international.com.au/pa/indexbaa2.htThese pages deleted due to 0

The Fine Art of Sheet

 http://www.pa-international.com.au/pa/indexbaa2.htThese pages deleted due to 0

BEND DEDUCTION
DIM Y + DIM B - FLAT LENGTH
$2.611+2.611-5.00=.222$
OUTSIDE SETBACK (OS)
OUTSIDE SETBACK (OS)
90 BEND:
MT + BEND
MT + BEND RADIUS
$.105+.1875=.2925$ NON 90 BEND.
(TAN(ANGLE/2)) x (MT + RADIUS)

bend allowance
($2 \times$ OS)- BEND DEDUCTION
$(2 \times .2925)-.222=.363$
K-FACTOR (IF UNKNOWN)
(-BEND RADIUS + (BEND ALLOWANCE
/($3.1416 \times$ BEND ANGLE/180))) /
MAT'L THICKNESS
$(-.1875+(.363 /(3.1416 \times 90) / 180)) / .104=.419$

			UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN INCHES TOLERANCES: Diameter $\pm .06$ ANGULAR: $\pm 1^{\circ}$ TWO PLACE DECIMAL $\pm .06$ THREE PLACE DECIMAL $\pm .005$		NAME	DATE	North Dakota State College of Science			
				DRAWN CHECKED						
							TITLE:			
				ENG APPR.						
				MFG APPR.						
			INTERPRET GEOMETRIC TOLERANCING PER:	Q.A.						
PROPRIETARY AND CONFIDENTIAL				COMMENTS:						
THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF			MATERIAL 12 GA SHEET				SIZE A	DWG. NO. Kfac 36		REV
North Dakota State College of Science ANY REPRODUCTIO IN PART OR AS A WHOLE WITHOUT THE WRITEN PERMISSION	NEXT ASSY	USED ON	FINISH							
OF NDSCS IS PROHIBIED.	APPLICATION		DO NOT SCALE DRAWING				SCALE: 1:1 WEIGHT:		SHEET 1 OF 1	
5	4		3	2			1			

90° AIR FORMING PUNCHES THINGS WE HAVE TO KNOW.

The Flange width and inside radius affect forming of the flange. For mild steel the minimum flange width is 4 times the material thickness plus the inside radius. For softer materials a shorter flange can be used and for harder materials a longer flange is required.

CRASHING THE FLANGE

WHAT IS THE ANGLE OF BEND 1 \& 2?
WHAT IS THE DISTANCE BETWEEN BEND $1 \& 2 ?$
WHAT IS THE HEIGHT OF THE FLANGE?
WHAT IS THE WIDTH OF THE PUNCH?

The Flange width and the inside radius affect the forming of the flange. For mild steel the minimum flange width is 4 times the stock thickness plus the inside radius. For softer metals a shorter flange can be used and for harder materials a longer flange is required.

Gooseneck Punches

Gooseneck punches offer the benefit of clearance for a return flange as in a two stroke channel forming operation.

90° BENDS

BEND ALLOWANCE (BA)=
$3.1416 \times(\mathrm{R}+(\mathrm{K}-\mathrm{FACTOR} \times$ MAT'L THICKNESS $)) \times($ (ANGLE/180)
$3.1416 \times(\mathrm{R}+($ \qquad x

FLAT BEFORE BENDING

How do we find A2(Outside Setback)= A1- Mat'I Thickness - Radius How do we find B2(Outside Setback)= B1- Mat'l Thickness - Radius WHERE DO WE SET THE BACK GAUGE?

BACK GAUGE SETTING $=$ A2 $+(B A / 2)$

90° BENDS

BEND ALLOWANCE (BA)=
$3.1416 \times(\mathrm{R}+(\mathrm{K}-\mathrm{FACTOR} \times$ MAT'L THICKNESS $)) \times($ (ANGLE/180)
$3.1416 \times\left(\mathrm{R}+\left(__{\text {_ }} \times\right.\right.$ _ $\left.)\right) \times .5$

How do we find A2(Outside Setback)= A1- Mat'I Thickness - Radius How do we find B2(Outside Setback)= B1- Mat'I Thickness - Radius WHERE DO WE SET THE BACK GAUGE?

BACK GAUGE SETTING = A2 + (BA/2)

ANGLES BETWEEN $1^{\circ}-179^{\circ}$, EXCLUDING 90°

BEND ALLOWANCE (BA)=
$3.1416 \times(\mathrm{R}+(\mathrm{K}-\mathrm{FACTOR} \times$ MAT'L THICKNESS) $) \times($ (ANGLE/180)
$3.1416 \times\left(\mathrm{R}+\right.$ ___ 2
 /180)

FLAT BEFORE BENDING

SETBACK WILL NEED TO BE DRAWN OUT TO FIGURE EXACT DISTANCE BACK GAUGE SETTING = A2 + (BA/2)

ANGLES BETWEEN $1^{\circ}-179^{\circ}$, EXCLUDING 90°

BEND ALLOWANCE (BA)=
$3.1416 \times(\mathrm{R}+(\mathrm{K}-\mathrm{FACTOR} \times$ MAT'L THICKNESS $)) \times($ (ANGLE/180)

FLAT BEFORE BENDING

SETBACK WILL NEED TO BE DRAWN OUT TO FIGURE EXACT DISTANCE BACK GAUGE SETTING = A2 + (BA/2)
$\begin{aligned} \text { K FACTOR } & =(-R+(B A /(3.1416 \times A N G L E / 180)) / T \\ \text { K FACTOR } & =(-.[+(. \quad /(3.1416 \times 90 / 180))) / .\end{aligned}$

UNLESS OTHERWISE SPECIFIED:		NAME	date	North Dakota State College of Science	
DIMENSIONS ARE IN INCHES TOLERANCES: FRACTIONAL $\pm 1 / 16$ ANGULAR:MACH $\pm 5^{\circ}$ BEND $\pm 1^{\circ}$ TWO PLACE DECIMAL $\pm .06$ THREE PLACE DECIMAL $\pm .031$	drawn				
	CHECKED			TITLE:	
	ENG APPR.				
	MFG APPR.				
INTERPRET GEOMETRIC TOLERANCING PER:	Q.A.				
	COMMENTS:				
MATERIAL				SIZE DWG. NO.	REV
FINISH					
DO NOT SCALE DRAWING				SCALE: 1:2 WEIGHT:	SHEET 1 OF 1

\backsim
FLAT IS 5.00" LONG
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROERTY OF
NORTH DAKOTA STATE COLLEGE OF
SCIENCE. ANY REPRODUCTION IN PART
OR AS A WHOLE WITHOUT THE WRITEN
PERMISSION OF NDSCS IS PROHIBIED.
NAMES:

UNLESS OTHERWISE SPECIFIED:		NAME	date	North Dakota State College of Science			
DIMENSIONS ARE IN INCHES TOLERANCES FRACTIONAL $\pm 1 / 16$ ANGULAR: $M A C H \pm 5^{\circ}$ BEND $\pm 1^{\circ}$ TWO PLACE DECIMAL $\quad \pm .06$ THREE PLACE DECIMAL $\pm .031$	drawn						
	Checked			TTLE:			
	Eng APPr.			K-FACTOR LAB FIGURING			
	MFG APPR.						
INTEPRREI GEOMERERC	Q.A.						
MAterral	COMMENTS:			SIZE DWG. NO. A BENDPATTERN6			
FNISH				REV			
Do not scale drawing				SCALE: 1:2	WEIGHT:		1 OF 1

NAME: \qquad WEIGHT:

NAME: \qquad WEIGHT: \qquad

D

A

12.500

FORMED PATTERN

PROPRIETARY AND CONFIDENTIAL THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF <INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOL WITHOUT THE WRITTEN PERMISSION OF WITHOUT THE WRITEA PERMISSION
<INSERT COMPANY NAME HERE> IS PROHIBTED.

MATERIAL

BLANK LENGTH = K FACTOR = . BEND ALLOWANCE = . WEIGHT =

FLAT PATTERN

A

PROPRIETARY AND CONFIDENTIAL THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF <INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOL WITHOUT THE WRITTEN PERMISSION O <INSERT COMPANY NAME HERE> IS <INSERI COM
PROHIBTED.

MATERIAL
BLANK LENGTH = K FACTOR = . BEND ALLOW $\overline{A N C E}=$. WEIGHT = \qquad

FLAT PATTERN

		UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN INCHES Tolerances: FRACTIONAL \pm ANGULAR: $M A C H \pm$ BEND \pm TWO PLACE DECIMAL \pm THREE PLACE DECIMAL \pm		name	date				
			drawn						
			CHECKED			TTLE:			
			ENG APPR.						
			MFG APPR.						
		INTERPRET GEOMETRIC TOLERANCING PER: MATERIAL 14 GA SHEET	Q.A.						
			COMments:			SIZE DWG. NO. B kfactor test plate 4			REV
NEXT ASSY	USED ON								
application		do not scale drawing				SCALE: 1:4	WEIGHT:	SHEET 1 OF 1	
		3	2			1			

NAME:

WITH THE FLAT PATTERN DIMENSIONED AS IS WHAT BEND GETS MADE 1ST? A B C D

1		乙		ε		\checkmark		G			
Z fo 119 ${ }^{\text {H }}$	：IHOIヨM Z：I ：ヨר＊OS	：SIINWWOO			OnMbda gitos ion oo	Nolltoind		9318HOXd SI SOSON to NOISSIWXヨd IVd NI NOIIOnCOUdヨy AN甘＇\exists ONJIOS \ddagger O $9 \exists 7102$ ヨIVIS VIOX甘C HIdON SIHI NI GヨNIVINOO NOII W WぬOUNI $\operatorname{ZH} \perp$ 			
					HSNH	no casn	1sst IXan				
		TH｜zive									
：3711											
				dddy osw							
				dddy ${ }^{\text {Na }}$	．IF ona						
				аэуәэно	cill						
							nM＊do				
		3170	3W＊N		Оэ\＃IIJdS Эsimazhio sşin						

Press Brake Besics

AD-R 30175

To Start Press Brake Operation

Activating punch movement

Turn Key on side of control panel

Pushing (1)button calibrates back gauge and punch

Punch

Die Opening

Changing Control Panel Values

Punch

Punch
Note: Curved part of punch faces the back of the machine.

Changing Values

Muting distance. Distance above the sheet at which the speed change takes place.

After all values have been entered, cycle through all of your inputs by hitting the enter button (DO NOT use the arrow keys) and then step on foot pedal and cycle the punch through a cycle with no material in the die.

Adjustments

> When Back Gauge is set to stop close to the Die, flip stops up before moving.

Set Back Gauge stops to outer parts of material
that is being bent.

Use material rests in front of Press Brake. DO NOT try to hold material with hands during bending process.

Shutting down

1. Place wood block
between punch
and die.
2. Turn key to foot/foot.
3. Step on foot pedal to run punch down to slightly touch wood block. Note: Punch will run in slow motion in foot/foot mode.

Shutting down

5. Turn Power OFF on side of Press Brake.

BEND DEDUCTION
DIM Y＋DIM B－FLAT LENGTH
$2.611+2.611-5.00=.222$
BEND DEDUCTION
DIM Y＋DIM B－FLAT LENGTH
$2.611+2.611-5.00=.222$
BEND DEDUCTION
DIM Y＋DIM B－FLAT LENGTH
$2.611+2.611-5.00=.222$
OUTSIDE SETBACK（OS）
90° BEND：
MT＋BEND RADIUS
$.105+.1875=.2925$
OUTSIDE SETBACK（OS）
90° BEND：
MT＋BEND RADIUS
$.105+.1875=.2925$.105
NON 90° BEND：
（TAN（ANGLE／2））\times（MT＋RADIUS）
$(\operatorname{TAN}(90 / 2)) \times(.105+.1875)=.2925$
BEND ALLOWANCE
$(2 \times \mathrm{OS})-$ BEND DEDUCTION
$(2 \times .2925)-.222=.363$
K－FACTOR（IF UNKNOWN）

		：IHOIヨM L：L：ヨา＊OS	
$\wedge \exists$ ¢		$\text { ODf }{\underset{O N}{O M O}}^{\text {ON }}$	$\underset{\exists Z \mid S}{V}$
			：3711

FORMED PATTERN

\square
\square North Dakota State College of Science

 $\underset{\text { SCALE：：1：}}{\text { SIZE }}$ WEIGHT： 42name Date
学

DRAWN	
CHECKED	
ENG APPR．	
MFG APPR．	
Q．A．	
COMMENTS：	

$(-.1875+(.363 /(3.1416 \times 90) / 180)) / / .104=.419$

BENDING

NAME:
WEIGHT

PROPRIETARY AND CONFIDENTIAL THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF <INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITEN PERMISSION OF <INSERT COMPANY NAME HERE> IS PROHIBITED.

BENDING

BENDING

8

BENDING

BENDING

FLAT PATTERN

4

TUBE ROLLING

CONTROL PANEL

INSERTING TUBE

RAISE THE RADIUS ROLLER HIGH ENOUGH (USING RATCHET) TO INSERT THE TUBE BETWEEN ALL 3 ROLLERS AS SHOWN BELOW.

ONCE TUBE IS IN PLACE FLIP RATCHET OVER AND TIGHTEN RADIUS ROLLER DOWN ONTO TUBE. YOU WILL WANT TO TIGHTEN THE RADIUS ROLLER DOWN ON THE TUBE TIGHT ENOUGH TO SIGHTLY BEND THE

TUBE ROLLING

DIRECTIONAL CONTROL
RIGHT PEDAL MOVES THE TUBE COUNTERCLOCKWISE LEFT PEDAL MOVES THE TUBE CLOCKWISE

ROLL THE TUBE FROM END TO END ALWAYS STOPPING THE END OF THE TUBE AT THE CENTERLINE OF THE DRIVE ROLLERS.

ONCE YOU HAVE MADE ONE PASS TIGHTEN THE RADIUS ROLLER APPROX. A 1/4 TO 1/2 A TURN AND ROLL AGAIN.

SMALLER ADJUSTMENTS WILL NEED TO BE MADE AS YOU GET CLOSER TO THE DESIRED RADIUS.

NOTE: WHEN ROLLING LONG LENGTHS OF TUBE. WATCH FOR THE TUBE HITTING THE CEILING OR LIGHTING ABOVE!

NOTE: FLAT TUBE LENGTH IS CALCULATED ON THE OUTSIDE RADIUS OR DIAMETER. THE CIRCUMFERENCE FORMULA IS DIA. x 3.1416 THIS WILL GIVE YOU AN APPROXIMATE LENGTH.
ADJUSTMENTS WILL NEED TO BE MADE. WRITE DOWN RADIUS ROLLER RULER DIMENSION IF YOU WANT TO MAKE 2 OF THE SAME SIZE RINGS. SEQUENCE OF BENDS WILL EFFECT RADIUS DIMESIONS TAKEN.

