Fisheries Management Techniques FT 211 Final Review

Age and Growth

Age vs. Growth -know the difference between these

- What are primary functions that regulate fish populations?
- Determinate Growth
 - o Mammals, Birds
- Indeterminate Growth
 - o Fishes
- 3 Primary Metrics for fish Growth
 - o Length
 - \circ Wet Weight
 - \circ Dry Weight
- Great variability in Growth (between species, Populations, Individuals)
 - o Environmental factors influencing growth
 - Temperature
 - Food and Nutrient Availability
 - Light Regime
 - Oxygen Concentration
 - Salinity
 - Pollutants
 - Predator Densities
 - Intraspecific Social Interactions
 - Genetics

Estimates of Growth (3 primary ways "in wild populations")

- Length Frequency Analysis (know what these look like and in general how to interpret)
 - Catch lots of fish and record lengths in bins
 - Pros: non-destructive, archived lengths
 - Cons: have to catch lots of fish, unknowns are high, easy to bias sample with gear, time, or location

Recaptures of individually marked fish

- Catch fish, measure, mark, then recapture and record growth
 - Pros: understand the variability in individual growth
 - Cons: tag loss, tagging may influence growth, behavior, or mortality, can't read tag
- Back calculation from calcified structures
 - Scales Most common
 - Know general mounting process
 - Know where scales come from (on the fish and very basically)
 - Fish grow faster in ????

- **Otoliths** (what is this?)
 - What are these?
 - Where are they located (roughly)
 - Know the general process to age (Whole otolith, clean and dry, Measured, Weighed, Broken, Burned, Oiled, Specimen ready)
 - We can also use otoliths for
 - Species identification
 - Paleoclimate studies (018)
 - Life history studies (elemental tracers)
- o Cleithra Esocidae
- Opercula
- Vertebrae Sharks (no spines, teeny otoliths)
- Fin Rays anything where scales don't work and you don't want to kill the fish
- What about other species? Clams, Octopus, crabs...

Marking and Tagging

Marks vs. Tags

Marks - anything used for recognition

Tags - contain specific id information

Marking and tagging allow us to:

- Label animal for special handling
 - Hatchery / wild
- Movement and migration studies
- Population statistics
 - o Growth
 - Exploitation and Natural Mortality

Know the assumptions associated with marked or tagged fish

Tag Retention – Depends on:

- Type of tag (design, size, shape)
- Color Red, Orange, or Yellow are best colors
- Attachment location
- Species being tagged
- Individual doing the tagging

External Tags or Marks (Know what these look like)

- Body Tissue
 - Fin Clips, Dorsal, Anal, Caudal, Adipose, Pectoral, Pelvic
 - Fin Punch Simple hole puncher
 - o Operculum Punch
- Dart and T-Bar Anchor (Floy) Tags
 - o Anchor Plastic or wire arrow (dart) or t-shaped (internal)
 - \circ Shaft vinyl tube with unique information (external)
 - o T-Bar (Floy)
 - T-bar inserted with special "gun" (clothing in a retail store)

- Anchor loaded into hollow metal tube
- Know the general tagging procedure
- Internal Anchor Tag (Like dart or T-Bar, but anchored internally)
 - Into body cavity (usually abdomen)
 - Advantage
 - High retention rate
 - Disadvantages
 - Abrasions internally and externally
 - Difficult to tag
 - Requires experience
 - Time consuming
- Transbody Tags
 - Peterson Disc Tag
 - 2 round plastic tags
 - Either side of body
 - Wire through tag, muscle and second tag and back again
 - Know the general tagging procedure
 - o Spaghetti Tag
 - Loop of thin vinyl tubing
 - Cannula through dorsal muscle
 - Pass tube through cannula, remove cannula
- Jaw Tags
 - o Highly visible
 - Can limit Growth
 - Can interfere with feeding
- Branding Scar on Fish
 - Hot, Cold, Chemical
- Pigment Marks
 - Applied by: Immersion, Spraying, Injection, Tattooing
 - Types of mark: Dyes. Stains, Inks, Paints, Microscopic plastic chips

Internal Tags or Marks (know what these look like)

- Advantages
 - Does not require mutilation
 - Does not protrude from body
 - Very high retention
- Disadvantage
 - o Not visible
- Tags should be:
 - o Made of bio-compatible material
 - Placed in non-obtrusive locations
 - Small in relation to host 2% body weight
- Visible implant tags (VIP) "Next to eye of fish"
 - On un-pigmented tissue

- Alphanumerically coded
- Coded wire tags (CWT)
 - Most popular in the world
 - o Magnetized stainless steel "spool" then cut by machine
 - Fin clip to identify presence of tag!!
- Passive integrated transponder tags (PIT)
 - o Electronic identification system
 - Computer chip and antenna in glass tube
 - Injected into animal (reader reads tag number)
 - o Expensive
- Acoustic Tags
 - o Acoustic signal emitted from tag
 - Hydrophone listens for tag presence
 - o Better in deeper water (saltwater) where radio tags are not applicable
- Radio Tags (VHF)
 - o Radio or VHF signal emitted from tag
 - Radio receiver listens for tag presence
 - Better in shallow water (10m of depth) (great for rivers)
- Scale and Otolith marks
 - o Advantages
 - Naturally produced
 - No stress
 - Less handling and injury
 - Nearly all fish carry mark
 - o Disadvantage
 - Scales and otoliths have to be removed
 - o Thermal Marking (most common)
 - Warming or cooling environment fish is in (typically in hatcheries)
 - Chemical marking
 - Not as common
- Other Species Marking (have some ideas of how to do this)

Visual Observation of Fishes and Aquatic Habitat

Sometimes the best way to figure out what is happening is to take a look

Direct Observation (know what these techniques look like "weirs vs tagging vs snorkel etc")

- Best when other methods not effective
- Only effective in clear water
- Limited to visibility eg, cannot tell weights

Collects information on ______ that might otherwise be attainable using standard techniques

- Composition
- Distribution

- Abundance
- Behavior

Above Water

- Stream Surveys
 - o Stream Walking
 - Estimate # of fish in the stream
- Aerial Surveys
 - Fly around and count fish
 - Estimate large groups of fish
 - What are the biases?
 - What are the benefits?
 - What are the disadvantages? (THE BBD's)
- Counting Towers
 - o Fish Viewed and counted by observers in towers
 - Unobstructed View
 - What are the BBD's?
- Weirs
 - o Fixed vs. Floating
 - o Force fish to swim in one area
 - Count fish as they pass
 - Block at night
 - What are the BBD's?

Below Water

- Snorkel
 - Simple and requires little equipment
 - Good for looking at??? Spawning locations, behavior etc...
 - In deep water move upstream in shallow downstream
- SCUBA Dive Surveys
 - o More specialized equipment required
 - o Remain submerged for longer periods of time
 - Protocol similar to snorkeling
 - o Noisier than snorkeling and may frighten fish
 - o Know some safety concerns (contaminants, marine life, cold water etc)
- Remotely Operated Vehicle (ROV) / Submersible
 - o Tethered underwater robot
 - Cameras & Lights
 - Pilots Drive ROV's

Factors Affecting Direct Observations

- Depth restricts snorkelers & Divers
- Temperature limits dive or snorkel time
- Cover can make it hard to see / identify fish

Types of Direct Observation Surveys

- Direct Enumeration

- Count all of the organisms you see
- Can increase precision with multiple passes
- Mark -Recapture Estimates
 - Marked with visible tags
 - o Recaptured
 - Use marked and unmarked to get population estimates
- Line Transect Estimates (Swath Transects)
 - Divers travel along well defined line
 - Divers identify fish on either side of lines (out to specific distance)
- Habitat Use Estimates
 - Unbiased information on habitat use
 - Can be used to study life stages
 - Develop estimates of fish habitats

The final will be comprehensive with 1/4 material from exam 1, 1/4 Exam 2, and 1/2 New Material (Last three lectures).

Multiple choice, matching, fill in the blank, and short answer.

Good luck and study hard