# Fisheries Management Techniques FT 211

Joel Markis Asst Professor Fisheries Technology University of Alaska Southeast



**Fisheries Technology** 

## Chapter 17

Visual Observation of Fishes and Aquatic Habitat

### Outline

- Visual Observation of Fishes and Aquatic Habitat
- Above water observations
- Below Water observations
- Factors affecting observations
- Underwater survey techniques
- Review of Course

#### Student Learning Outcomes

#### Students will be able to:

- Describe Visual Observation techniques and their application in fisheries
- Summarize above water techniques including Stream Surveys, Aerial Surveys, Counting Towers and Weirs
- Summarize below water techniques including Snorkel surveys, Dive Surveys and Remotely Operated Vehicle use
- Describe factors that affect direct observations
- Summarize Underwater survey techniques for the enumeration of fish and aquatic habitat

#### Visual Observation of Fishes and Aquatic Habitat

- Sometimes the best way to figure out what is happening is to take a look
  - Direct Observation

#### **Observation Techniques**

- Above Water
  - Stream Surveys
  - Aerial Surveys
  - Counting Towers
  - Weirs
- Below Water
  - Snorkel / Dive Surveys
  - Remotely Operated Vehicle (ROV) / Submersible

#### Introduction

- Versatile and cost-effective
- Collects information on
  - Composition
  - Distribution
  - Abundance
  - Behavior





### Introduction (cont.)

- Best when other methods not effective
- Only effective in clear water
- Limited to visibility
- Some info hard to get eg, cannot tell weights / age



#### Stream Survey

- Stream Walking
- Estimate # of fish in the stream





#### Stream Survey

- Calibration of surveyors
  - Takes practice and time
- Polarized glasses
  - A must
- Lighting can influence counts
- Turbididity
- Bears, Bears, Bears

- Fly around and count fish
  - Not quite that simple









#### • Estimate large groups of fish





#### • 214 Salmon Streams in PWS





- Biases
  - Individual
  - Aircraft
  - Altitude
  - Weather
- Benefits
  - Quick
  - Cover lots of area
- Disadvantages
  - Safety
  - Cost

## Counting Towers



## **Counting Towers**

- Fish Viewed and counted by observers in towers
- Unobstructed View
- Bias
  - Numerous counters
  - Spp ID
  - Lots of fish
- Benefits
  - Census like
  - Cheap







#### Weirs

- Force fish to swim in one area
- Count fish as they pass
  - Block at night
- Fixed
- Floating



#### Weirs

- Fixed
- Floating







#### Weirs

- Bias
  - Not many
  - Fish escape
- Disadvantages
  - Expensive
  - Labor intensive
- Benefits
  - Census
  - Collect info on fish (ASL)



## Self Check

- The weir in the above image is a \_\_\_\_\_ Weir
  - Floating
  - Fixed
  - None of the above
- The main drawback with Aerial surveys is cost
  - True
  - False



## Underwater observation techniques and equipment

- Snorkel
  - Requires least equipment
  - One of simplest ways to observe organisms
  - Can be used in remote locations



## Snorkel

- Equipment includes
  - Mask
  - Snorkel
  - Wet or dry suit
  - Swim fins or wading boots
  - Weight Belt
  - Clipboard









### Observations especially useful for observing:

- Spawning
- Behavioral interactions
- Favored feeding
- Resting positions
- Movement
- Estimating numbers and sizes of populations





## **Snorkeling Protocol**

Entrance site #1

Entrance site #2

- Divers enter up or down stream
- Short resting period to allow settling
- Divers in deep water proceed downstream
  - By floating
- Divers in shallow water proceed upstream
  - Pull themselves along the bottom



#### Consistency of Data Depends on

- Light conditions
- Visibility
- Time of day
- Differences in fish behavior



#### Scuba

- More specialized equipment required
- Divers wear tanks filled with compressed air
- Mouth piece to regulate air flow







## Scuba (cont.)

- Equipment used
  - Depth and pressure gauges
  - Buoyancy compensator
  - Watch
  - Weight belt
  - Wet or dry suits
- Limited to easily accessible areas



## Scuba (cont.)

- Remain submerged for long periods of time
- Protocol similar to snorkeling
- Longer resting periods required to acclimate divers
- Noisier than snorkeling and may frighten fish





## One of those days

NOAA

## Record keeping

- Recorded by diver or communicated to assistant
- Use waterproof slates, cuffs, or scrolls
- Pencil attached to divers hand
  - Pencils float



### Safety and training

- Hazards Include:
  - Fast moving water
  - Cold water temperatures
  - Poor visibility
  - Physical obstruction
  - Environmental factors
  - Contaminants and dangerous organisms



#### Never dive alone!

- Have a partner
- Can be in or out of the water
- Assess potential hazards
- Check for water release times in regulated waters



#### Never:

- Attach ropes or lines to divers
  - In streams lakes or rivers with strong currents
  - In streams lakes or rivers with tidal changes
- Always avoid areas of extreme turbulence







## Hypothermia

- Cooling of the internal body temperature below
- Divers submerged for lengthy periods
- Leaks or suit failure




## Other hazards

- Turbid water
- Underwater obstructions
- Overhead environments
- Chemical and microbial contaminants







## Giardia lamblia

- Protozoan
- Causes giardia when ingested
- In freshwater throughout the world
- Avoid ingesting water that's not filtered









## Marine environments

- Beware of dangerous organisms such as sharks
- Lionfish or anything with teeth



## Training

- Essential for success
- Helps ensure crew safety
  - First Aid
  - Rescue
  - Swift Water
  - SCUBA







## Training should address

- Safety
- Equipment
- Observation techniques
- Data collection and recording







## **Alternative Methods**

- Use of underwater cameras
  - Take pictures at predetermined frequencies
  - Work at day or night

HERO3

- Expensive to buy and maintain
- Should be used with other methods for best results









## Remotely Operated Vehicle (ROV)



## Remotely Operated Vehicle (ROV)

- Tethered underwater robot
- Cameras & Lights
- Pilots Drive ROV's



## Self Check

- Which underwater survey technique requires the most extensive training?
  - Snorkeling
  - Scuba Diving
  - Underwater camera operation
- When surveying streams divers or snorkelers should enter the site from upstream if possible
  - True
  - False

### **Environmental Influences**

- Survey accuracy influenced by
  - species
  - environmental features











## Depth

- Sufficient depth to submerge a mask
- Shallow-limit divers view
- Too deep-light and air limitations





## Temperature

- Carry calibrated thermometer
- Measure before sampling and periodically
- Organism behavior may change with temperature
  - Seek deeper cooler water if warm
  - Alter habitat preferences depending on temperature





## Visibility

- Clarity can limit divers abilities
- Dependent on species
- Should be sufficient to
  - See the bottom
  - Identify species
  - See fleeing organisms
- Should not assume adequate without measurement







- Type and abundance can limit survey
- Less cover is better
- Describe and quantify cover in results



## **Applications - Precision and Accuracy**

- Replicate counts
  - temporally or spatially
- Variation is typically small
- Accuracy difficult as population density not known



## **Underwater Survey Procedures**

- In flowing waters, move upstream when possible
- Measure habitat features after fish counting







## Self Check

- Aquatic vegetation or other types of cover may make aquatic surveys more challenging
  - True
  - False
- Visibility is of litytle concer when conducting underwater aquatic surveys
  - True
  - False

#### **Direct enumeration**

- Equal chance of being seen and counted
- Count all organisms in a single pass
- Precision evaluated by multiple passes



Pass#

- 20 clown fish
- 15 clown fish
- 25 clown fish
- 21 clown fish

#### Mark - Recapture Estimates

- Marked with visible tags
- Recaptured
- Use marked and unmarked to get population estimates





#### Line Transect Estimates

- Divers travel along well defined line
- Multiple lines set
- Divers identify fish on either side of lines



## **Towed Diver Surveys**

- Cover a large area
- Takes skill & Coordination
- Ident. chalenging





#### Habitat Use Estimates

- Unbiased information on habitat use
- Can be used to study life stages
- Develop estimates of fish habitats



## Self Check

- When conducting a line transect survey a diver only counts fish that fall or swim over the line
  - True
  - False
- The primary benefit of a towed diver survey is that the diver does not need to be in as fgood of shape and swim as far
  - True
  - False

## **Course Summary**

- Planning for Sampling
- Data & Statistics
- Safety in Fisheries
- Aquatic Habitat Measurement
- Care & Handling of Aquatic Organisms
- Passive Capture Techniques
- Active Capture Techniques
- Length, Weight & Associated Indices
- Age & Growth
- Marking & Tagging
- Visual Observation

## Planning for Sampling

- Problem Identification
- Research Question
- Existing Information and Theories
- Prediction, Hypothesis, & Objectives
- Data statement
- Planning for sampling
- Preparing for sampling
- Data collection and processing Sampling
- Analysis
- Evaluation & Interpretation
- Synthesis and inference
- Communication of results





#### **Data & Statistics**

- What is Data?
- Data collection
- Data Management
- Data analysis
- Data visualization





## Safety in Fisheries

- Fisheries IS Hazardous
- Safety Handbook AFS
- Knowledge and Training is Key
  - First aid / CPR
  - Survival
  - Bear
  - Firearm
  - Driving
  - Aviation
  - Boating
  - Swiftwater
- Safety is EVERYONES Responsibility



#### Aquatic Habitat Measurement

- Habitat is Key to Fish
  - Physical / Hydrology
    - o Size, Area, Volume
  - Chemical
    - Primarily WQ
  - Biological
    - Vegetation / plants





### Care and Handling of Fish

- Permits
- Stress in Fish
- Handling
- Environmental stressors
- Anesthetics
- Holding & Hauling
- Euthanasia
- Fixation





#### **Passive** Capture

- Not Actively Moving
- Entanglement
  - Gill nets
  - Trammel nets
- Entrapment
  - Hoop nets
  - Trap Nets
  - Pot gear
  - Minnow traps
- Angling
  - Trotlines
  - Longlines
  - Hook n' Line





#### **Active Capture**

#### Actively moving Gear

- Towed Nets
  - Beam Trawl
  - Otter Trawl
  - Midwinter Trawl
  - Bottom Trawl
- Dredges
  - Trawl for the substrate (scallop)
- Surrounding Nets
  - Beach Seine
  - Purse Seine
  - Minnow Seine





#### Length, Weight & Assc Indicies

- Important for Growth, Production, etc
- Lots of ways to measure
- Length
- Girth
- Weight
- Length vs. Weight
- Length Frequency histogram









Fin fish pectoral fin

#### Age & Growth

- Critical in Managing Fish
- Age Number
- Growth Change over time
  - Length Frequency Analysis
  - Recaptures of individually marked fish
  - Back calculation from calcified structures
- Scales & Otoliths





## Marking & Tagging

- Marks identify group
- Tags Identify Individual
- Lots of options
- Depends on Objective
- Assumptions be met







#### Visual Observation

- Direct Observation is best
- Above Water
  - Stream Surveys
  - Aerial Surveys
  - Counting Towers
  - Weirs
- Below Water
  - Snorkel / Dive Surveys
  - Remotely Operated Vehicle (ROV) / Submersible

# In Closing


### Fisheries is a Diverse Field



### Fisheries are Important to Alaska



## Revenue by state

#### Total Landings Revenue by State (2011)

(thousands of dollars)

| State         | Total     | State          | Total   |
|---------------|-----------|----------------|---------|
|               | Revenue   |                | Revenue |
| Alaska        | 1,911,540 | Maryland       | 76,722  |
| Massachusetts | 565,238   | Rhode Island   | 75,956  |
| Maine         | 424,712   | North Carolina | 71,177  |
| Louisiana     | 333,619   | East Florida   | 60,570  |
| Washington    | 331,404   | Alabama        | 50,941  |
| Texas         | 239,082   | New York       | 37,625  |
| New Jersey    | 214,191   | Mississippi    | 30,300  |
| California    | 201,269   | New Hampshire  | 23,483  |
| Virginia      | 191,665   | South Carolina | 23,268  |
| West Florida  | 164,076   | Connecticut    | 19,668  |
| Oregon        | 148,337   | Georgia        | 16,295  |
| Hawai'i       | 91,513    | Delaware       | 7,091   |

# Landings by State

#### Total Landings by State (2011)

(thousands of pounds)

| State         | Total     | State          | Total    |
|---------------|-----------|----------------|----------|
|               | Landings  |                | Landings |
| Alaska        | 5,272,554 | West Florida   | 77,687   |
| Louisiana     | 1,285,875 | Rhode Island   | 77,236   |
| Virginia      | 494,028   | North Carolina | 67,483   |
| California    | 408,181   | East Florida   | 31,215   |
| Mississippi   | 278,080   | Hawai'i        | 29,289   |
| Oregon        | 274,525   | New York       | 27,104   |
| Maine         | 269,923   | Alabama        | 26,145   |
| Massachusetts | 255,798   | Georgia        | 12,646   |
| Washington    | 210,672   | New Hampshire  | 12,321   |
| New Jersey    | 175,516   | South Carolina | 12,116   |
| Texas         | 98,111    | Connecticut    | 7,078    |
| Maryland      | 78,197    | Delaware       | 4,921    |

## There are Opportunities Available

- Jobs
- Jobs
- Jobs

|                                         | Tou orthers Norte/J | obsiliarings and Employmens Opport                   | uninitias.                                            |           |
|-----------------------------------------|---------------------|------------------------------------------------------|-------------------------------------------------------|-----------|
| HERIES ST                               | Jobs Listings       | and Employment Opport                                | unities                                               |           |
|                                         | Why is th           | is fish so easy to h                                 | andle?                                                |           |
| ( i i i i i i i i i i i i i i i i i i i |                     | Read The store                                       | and lited out a                                       | ala I     |
| RIGE TO OUR NEWSLETTER                  | = 970               | and the second has                                   |                                                       | 1         |
| TUS .                                   |                     | and and                                              |                                                       | -         |
| COSULID DENIED TSI                      |                     |                                                      |                                                       | 1.50      |
| PSORY                                   | Pesting lustr       | uctions for jobs / ample                             | ymant opportunitie                                    | s= Clicki |
| NGS/REGISTRATION                        | Related Catego      | ories                                                |                                                       |           |
|                                         | Student RhD Parma   | ners Terroprics Professional                         |                                                       |           |
| RHEUP                                   | Jab #               | Title                                                | Agency, Location                                      | Catego    |
| NITIONS                                 | 11116               | 15 Astanaria -<br>Smalary                            | Ronda LAKENIATCH, Univ<br>of Ronda, Galmazilla, R.    | Studen    |
| ITORE<br>ASES                           | 1017                | Bassarch Associana-Laina<br>Eria Vialiana            | Menigan Stata University<br>Regard Chy                | 2:12      |
| 8                                       | 11117               | Sanisr Honitorine<br>Biologie                        | Conternation Halton<br>Burlington, Ontario,<br>Canada | Parmar    |
| KUING EQUICATION                        |                     |                                                      |                                                       |           |
| NADERASHERIES                           | 11118               | Summer Insent                                        | ATAC Is 'Pond<br>Nanagement Spedalizz'                | Studen    |
| CATION PROFESSIONAL<br>BANERI           |                     | ShQkadizarninin-Reaf<br>Sin Scalaty                  | Guill Coast: Research<br>Laboratory, USN              | Studen    |
|                                         | 11114               | Permanens Ret Stolaria;<br>2 Description             | WA State Department of<br>Ren & Widiffe               | Samar     |
| 00000                                   | *****               | BatariasTechnicianI                                  | Confederated Tribed of<br>the Unacila Indian Res.     | Татра     |
|                                         | 11112               | <u>Bith Culturile Remt/Ranzh</u><br><u>Vibrian Q</u> | NIN Game & Roh Red<br>River State Rich Hatchery       | Parmar    |
|                                         | 11111               | Otherstead                                           | Hoopa Valley Tribal<br>Roharlad                       | Parmar    |
|                                         | 11110               | PhO Graduana<br>Astista nocho                        | Lubbody, Teoraia                                      | Studen    |
|                                         | 11109               | Animentiarre River<br>Emission                       | Dihole Natural History<br>Survey Univer Dihole        | Professi  |
|                                         | 11108               | Bit Cuturia Birm Bandi<br>Viziana                    | NIV Game & Roy Rook<br>Lale State Ret Hasshery        | Parmar    |
|                                         |                     |                                                      |                                                       |           |

- Sarrel

## Just a touch



## Thank You !

- Please contact me with any questions
- Please sign up for Fish Tech Courses Next Semester
- Please Fill out Evaluations
- HAVE A GOOD SUMMER/WINTER!

