Fisheries Management Techniques FT 211

Joel Markis
Asst Professor
Fisheries Technology
University of Alaska Southeast

Fisheries Technology

Chapter 15

Age and Growth

Outline

This Module will Contain 6 Main areas
Age \& Growth in fish
Length Frequency Analysis
Recapture of marked Individuals
Scales
Otoliths
Other hard Structures

Student Learning Outcomes

Students will be able to:

- Describe age and Growth, how they differ, and their importance in fishery science
- Summarize length frequency analysis and how it can be used to determine age and growth in fish
- Describe recapture techniques and how they can be used to determine growth
- Describe how scales are processed for age determination and be able to identify annuali on salmon scales
- Describe how otolithsare processed for age determination and be able to identify annuali
- Summarize other hard structure analysis and how they can be used to determine age and growth in fish

Age and Growth

- AGE refers to a quantitative description of how long an organism has been alive
- Age refers to years
- Used in determining maturity, used to describe growth
- GROWTH represents a change in size (e.g., length or weight)
- GROWTH RATE typically as a function of time
- Growth is the change in length, wet weight, or dry weight over time

Age and Growth in Fish Biology

- Growth, recruitment, and mortality are the primary functions that regulate fish population
- Important for managers to Know about these
- Lots of fish - all old and ready to die
- Only a few adult fish - but millions ready to recruit
- Lots of fish - but not growing
- Growth integrates ecosystem properties
- Water quality, food availability, predator density
- Can be easier to measure than some of the other parameters

Measuring Age \& Growth

- How do you estimate age and growth?
- Direct Observation - Measuring \& Recapturing fish
- Looking at Fish Length frequencies
- Using Hard structures
- The powerful Otolith
- And many many more

Growth patterns

- Determinate Growth
- Mammals \& birds
- Indeterminate Growth
- Fishes, Reptiles, Mollusks

Fingermark Growth Curve

Number of rings counted on sectioned otoliths -- years?

Different metrics of fish growth

- Length

- Pros: easy, intuitive, history in angling, length rarely shrinks
- Cons: lots of change in biomass not related in length
- Wet Weight
- Pros: used in large calculations (ie population biomass)
- Cons: can take more time in field (rocking boat or wind and scale don't mix)
- Dry Weight
- Pros: accurate description of individual's current state
- Cons: time intensive and must kill fish

Growth patterns

- Great variability in growth
- Size at age: High variability (L vs W ?)
- Between species
- Between populations
- Between individuals
- Between Habitats

Environmental factors influencing growth

- Temperature
- Food and Nutrient Availability
- Light Regime
- Oxygen Concentration
- Salinity
- Pollutants
- Predator Densities
- Intraspecific Social Interactions
- Genetics

Example: Species polymorphism

Salmonidae Artic Charr
Salvelinus alpinus

Large benthic feeder

Small benthic feeder

Piscivorous feeder

Planktivorous feeder

Annual growth variation

3 ways to estimate growth (Wild)

- Length Frequency Analysis

-Recaptures of individually marked fish (Observation)

- Back calculation from calcified structures (???)

What about in the laboratory?

- Not the same as wild
- Too many factors to control
- Sometimes our best guess

Self Check

- Fish grow the same way as mammals and birds and have what we call determinate growth
- True
- False
- A change in length or weight refers to
- Age
- Growth
- Growth rate

Length Frequency Analysis

Examining length groups and modes then inferring age from them

- Pros: non-destructive, can use archived lengths
- Cons: have to catch lots of fish, unknowns are high!, easy to bias sample with gear, time, or location
- ~6 age classes present
- Appear to be strong

Population Age-Size structure

- Normal population

Length frequency in use

548 bluegill

- 4 mm bins
- 48-641 Year
- 72-962 Year
- 120-152 3 Year?
- 160-200 4 Year ??

Self Check

- Length frequency information is useful and valuable for determining age of fish partly because you can use achieved fish length data and it is non lethal
- True
- False
- How many age classes appear to be present in the above length frequency histogram
- 2
-3
- 4
- 5
- 6 or more

Recaptures of Marked Individuals

Measuring a fish (length, weight) tagging it, then measuring change or growth when recaptured

- Individual fish have to be marked (not groups)
- Pros: non-destructive, good individual data
- Cons: have to catch TONS of fish to see a recapture
- Population is 10000 fish
- You catch and tag 100 fish, good effort, but
- You Come back a year later....
- ...at best maybe 60 survived....
- ...maybe only 10% lost their tags
- so there are 54 tags in 10,000 fish

Estimating growth from tagging

- Pros: understand the variability in individual growth
- Cons:
- tag loss,
- tagging may influence growth, behavior, or mortality,
- cant read tag

Lots of ways to mark fish

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type of mark \& \[
\left|\begin{array}{l}
\text { \$ per Tag } \\
\text { Tag Length }
\end{array}\right|
\] \& Advantages \& Disadvantages \& \begin{tabular}{l}
Laminated disc \\
- YT flounder \\
- flat fishes
\end{tabular} \& 0.50 \& \begin{tabular}{l}
- low cost \\
- unique animal ID \\
- nearly permanent
\end{tabular} \& \begin{tabular}{l}
- minor injury to animal \\
- some training
\end{tabular} \\
\hline Fin clipping/V-notch \& 0 \& - no cost \& \& \& 3/4+ in. \& \& necessary \\
\hline \begin{tabular}{l}
- fish in a closed system (ex. trout) \\
- lobster
\end{tabular} \& \& \begin{tabular}{l}
- easy application \\
- fast application
\end{tabular} \& - limited time of mark (regrowth/ molting) \& Internal anchor tag \& \[
0.75
\]
\[
\sim 3 \mathrm{in} .
\] \& \begin{tabular}{l}
- longer retention \\
- more secure \\
- unique animal ID
\end{tabular} \& \begin{tabular}{l}
- specific training required \\
- slow application \\
- minor injury to animal
\end{tabular} \\
\hline Polyethylene ribbon or disc - shellfish \& \(0.15-0.20\)
\(1 / 8\) to \(3 / 4 \mathrm{in}\). \& \begin{tabular}{l}
- low cost \\
- unique animal ID \\
- easy application
\end{tabular} \& \begin{tabular}{l}
- need hard surface \\
- life of glue limits tag life
\end{tabular} \& \begin{tabular}{l}
Passive integrated transponder (PIT) \\
- turtles \\
- salmon
\end{tabular} \& \[
\begin{gathered}
5-10 \\
1 / 2 \text { to } 1 \mathrm{in} .
\end{gathered}
\] \& \begin{tabular}{l}
- nearly permanent \\
- unique animal ID \\
- electronic tag detection
\end{tabular} \& \begin{tabular}{l}
- not visible \\
- scanner needed to read tag \# - cost of scanners and tag injector
\end{tabular} \\
\hline \begin{tabular}{l}
Visible implant elastomer (VIE) \\
- turtles \\
- salmon \\
- hatchery releases
\end{tabular} \& (varies)

$\sim 1 / 4 \mathrm{in}$. \& | - easy detection |
| :--- |
| - easy to tag large \#s of fish quickly |
| - inexpensive color | \& | - no animal ID |
| :--- |
| - very expensive injector | \& | Archival tag (data storage) |
| :--- |
| - various species |
| - cod |
| -YT flounder | \& | $200+$ |
| :--- |
| 1 to 2 in . | \& - temperature and depth records - other options available \& | - limited battery life |
| :--- |
| - tag must be retrieved to get data |

\hline | T-bar anchor tag |
| :--- |
| - most fish |
| - scup, shark... | \& 0.45

$2+\mathrm{in}$. \& | - low cost |
| :--- |
| - unique animal ID |
| - fast application |
| - appropriate for many species | \& | - requires tagging gun |
| :--- |
| - training needed |
| - tags are shed easily | \& \& | $2,000+$ |
| :--- |
| 2 to 6 in . | \& | - real time data |
| :--- |
| - location recorded |
| - tags do not need to be recovered | \& | - cost |
| :--- |
| - limited battery life - satellite time is additional cost |

\hline
\end{tabular}

Self Check

- What is the biggest downside of using recaptured fish to estimate growth
- Tag loss
- Have to capture lots of fish
- Tag expense
- Tags are harmful to fish

Aging Using Hard Structures

Structures used for aging

- Scales - Most common
- Otoliths (sacrifice) - $2^{\text {nd }}$ most common
- Cleithra - Esocidae (sacrifice)
- Opercula (sacrifice)
- Vertebrae - Sharks (no spines, teeny otoliths)
- Fin Rays - anything where scales don't work and you don't want to kill the fish

Scales

- Most widely used age method
- Non lethal
- Count annual rings to get age
- Space between rings is proportional to growth
- Bias to underestimate older fish

Posterior

Age measurement through scales

Scales

Scales are like rings on a tree

- Fish grow faster in summer than winter
- Faster in Salt also

Scale Processing and Preparation

- Remove scales
- Scales go on scale cards (Gum Cards)
- Pressed and heated
- Use microfiche machine to read

Fish Scale Location

Mounting Scales

Mounting Scales

- A) Hydraulic Scale Press
- Heated
- B) Manual Scale Roller
- C) Microfiche reader

Scales

- Annuli - Dark annual bands laid down during winter slower growing periods
- Focus - or origin of scale
- Circuli - circular growth rings

Age

2:2 Sockeye
 0:3 largemouth bass 23 cm

Self Check

- The dark bands laid down during the winter slower growing periods on a fish's scale are called
- Annuli
- Focus
- Circuli
- Loci
- Scales are the most widely used structures for aging fish
- True
- False

Otoliths

Otoliths are the earbones of bony fish

- They come in pairs (3 total)
- Size and Shape vary widely
- Must sacrifice to collect
- More accurate than scales

Otoliths and fisheries science

- Unique properties:
- Otolith growth is continual
- Lack of resorption
- Complete growth and environmental record
- Crystalline structure

- Holds trace metals
- Allows scientist to:
- Determine temperature (Sr:Ca)
- Determine salinity throughout life history
- Anadromous migrations

Where the F are they?

- Posterior and dorsal to the eyes
- Takes practice
- Port samplers 30 sec

Otolith Process

- Whole otolith, clean and dry
- Measured
- Weighed
- Broken
- Burned
- Oiled
- Specimen ready to read!

Various ways to fracture Otoliths

- Spp dependant

Otoliths

Break \& Burn

Age measurement through otoliths

- Yelloweye rockfish, age 82

Otolith uses

- Age determination
- Daily ring counts
- Annual ring counts
- Radioactive isotopes
- Species identification
- Life history studies (elemental tracers)
- Paleoclimate studies $\left(0_{18}\right)$

Species identification

Westslope Cutthroat Trout (Oncorhynchus clarkii)

Weakfish (cynoscion regalis)

Back Calculate growth

- Age = this 358 mm largemouth bass is 10 years old

Back Calculate growth

Back Calculation to get Weight

- Linear regression of scale radius and fish length
- 447 LMB from 15 lakes in Northern Wisconsin

Otolith Age Verification

- Otolith under normal microscope light
- Marked otoliths under fluorescent light
- Mark otoliths by exposing fish to fluorescent chemicals

Otolith Age Verification

Thermal marking of Otoliths

- Change temp of water
- Change growth rates
- Lay down false anulit

DIPAC Snettisham Speel Arm E/S '00 Sockeye

Lot 6 inc N-1 NRR F\#4 Hatch Code: $4,4 \mathrm{nH}$ (Early Small)

Life History applied to age reading

- Life history events expressed in common otolith growth patterns?

Yelloweye rockfish, age 82

Notice the reduction in increment widths from age 20 on.

Could this also represem the onset of maturity

Life History applied to age reading

Transition at 5, which is the reported age of maturity

- Growth slows

Self Check

- Otoliths are typically only used for determining fish age
- True
- False
- What is the technique called that is used to prepare oroliths for age determination
- Smash and grab
- Break and burn
- Slash and scope
- Broke and poke

Cleithra - Esocidae (sacrifice)

Opercula (sacrifice)

Opercula (singular: operculum)

Age-4 YEP, spring

Other structures used for aging

- Vertebrae - Sharks (no spines, teeny otoliths)
- Fin Rays - anything where scales don't work and you don't want to kill the fish
- Spines

Fin Rays \& Spines

- Dorsal spine from a spiny dogfish

Fin Ray sectioning

- Fix in Epoxy
- Cut thin slice (section)
- Examine under magnifgication

- A bluehead sucker - opercle bone
- B flannelmouth sucker - dentary bone
- C paddlefishand sectioned vertebra

Self Check

- Vertebrae are used to age sharks because they don't have scales and loose their teeth
- True
- False
- Many of the other structures used to age fish are similar to scales and Otoliths, they are hard and deposit annual bands similar to a tree
- True
- False

VALVE SPECIMEN PREP

Life History applied to age reading

74 years old; Born in 1938

Age measurement methods

- Scales
- Otoliths
- Vertebrae
- Rays/Spines
- Non Fish spp. ???
- Clams
- Urchins
- Crabs
- Shrimp
- Octopuses
- Sea Cucumbers

Recap

Age \& Growth in fish

Length Frequency Analysis
Recapture of marked Individuals
Hard structures
Scales
Otoliths
Other hard Structures

