Fisheries Management Techniques FT 211

Joel Markis Asst Professor Fisheries Technology University of Alaska Southeast

Fisheries Technology

Chapter 15

Age and Growth

Outline

This Module will Contain 6 Main areas Age & Growth in fish Length Frequency Analysis Recapture of marked Individuals Scales Otoliths Other hard Structures

Student Learning Outcomes

Students will be able to:

- Describe age and Growth, how they differ, and their importance in fishery science
- Summarize length frequency analysis and how it can be used to determine age and growth in fish
- Describe recapture techniques and how they can be used to determine growth
- Describe how scales are processed for age determination and be able to identify annuali on salmon scales
- Describe how otolithsare processed for age determination and be able to identify annuali
- Summarize other hard structure analysis and how they can be used to determine age and growth in fish

Age and Growth

- AGE refers to a quantitative description of how long an organism has been alive
- Age refers to years
 - Used in determining maturity, used to describe growth
- **GROWTH** represents a change in size (e.g., length or weight)
- **GROWTH RATE** typically as a **function of time**
 - Growth is the change in length, wet weight, or dry weight over time

Age and Growth in Fish Biology

- Growth, recruitment, and mortality are the primary functions that regulate fish population
 - Important for managers to Know about these
 - \circ Lots of fish all old and ready to die
 - Only a few adult fish but millions ready to recruit
 - Lots of fish but not growing
- Growth integrates ecosystem properties
 - Water quality, food availability, predator density
 - Can be easier to measure than some of the other parameters

Measuring Age & Growth

- How do you estimate age and growth?
 - Direct Observation Measuring & Recapturing fish
 - Looking at Fish Length frequencies
 - Using Hard structures
 - o The powerful Otolith
 - o And many many more

Growth patterns

- Determinate Growth
 - Mammals & birds
- Indeterminate Growth
 - Fishes, Reptiles, Mollusks

Number of rings counted on sectioned otoliths -- years ?

Different metrics of fish growth

- Length
 - Pros: easy, intuitive, history in angling, length rarely shrinks
 - Cons: lots of change in biomass not related in length
- Wet Weight
 - Pros: used in large calculations (ie population biomass)
 - Cons: can take more time in field (rocking boat or wind and scale don't mix)
- Dry Weight
 - Pros: accurate description of individual's current state
 - Cons: time intensive and must kill fish

Growth patterns

- Great variability in growth
- Size at age: High variability (L vs W ?)
 - Between species
 - Between populations
 - Between individuals
 - Between Habitats

Environmental factors influencing growth

- Temperature
- Food and Nutrient Availability
- Light Regime
- Oxygen Concentration
- Salinity
- Pollutants
- Predator Densities
- Intraspecific Social Interactions
- Genetics

Example: Species polymorphism

Large benthic feeder

Small benthic feeder

Piscivorous feeder

Planktivorous feeder

Salmonidae Artic Charr Salvelinus alpinus

Annual growth variation

<u>3 ways to estimate growth (Wild)</u>

Length Frequency Analysis

Recaptures of individually marked fish (Observation)

Back calculation from calcified structures (???)

What about in the laboratory?

- Not the same as wild
- Too many factors to control
- Sometimes our best guess

Self Check

- Fish grow the same way as mammals and birds and have what we call determinate growth
 - True
 - False
- A change in length or weight refers to
 - Age
 - Growth
 - Growth rate

Length Frequency Analysis

Examining length groups and modes then inferring age from them

- Pros: non-destructive, can use archived lengths
- Cons: have to catch lots of fish, unknowns are high!, easy to bias sample with gear, time, or location
- ~6 age classes present
 - Appear to be strong

Population Age-Size structure

• Normal population

Length frequency in use

548 bluegill • 4mm bins 60 – 48 – 64 1 Year 50 - 72 - 96 2 Year - 120 - 152 3 Year? 40 - 160 - 200 4 Year ?? 30 20 10 8° 06 10× 112 120 13 130 1 × 15 10 10 10 10 20 2 50 62 N 80 x **BLG** Length

Self Check

- Length frequency information is useful and valuable for determining age of fish partly because you can use achieved fish length data and it is non lethal
 - True
 - False
- How many age classes appear to be present in the above length frequency histogram
 - 2
 - 3
 - 4
 - 5
 - 6 or more

Recaptures of Marked Individuals

Measuring a fish (length, weight) tagging it, then measuring change or growth when recaptured

- Individual fish have to be marked (not groups)
- Pros: non-destructive, good individual data
- Cons: have to catch TONS of fish to see a recapture
 - Population is 10000 fish
 - You catch and tag 100 fish, good effort, but
 - You Come back a year later....
 - ...at best maybe 60 survived....
 - ...maybe only 10% lost their tags
 - so there are 54 tags in 10,000 fish

Estimating growth from tagging

- Pros: understand the variability in individual growth
- Cons:
 - tag loss,
 - tagging may influence growth, behavior, or mortality,
 - cant read tag

Lots of ways to mark fish

Type of mark	\$ per Tag Tag Length		Disadvantages	Laminated disc - YT flounder - flat fishes	0.50	- low cost - unique animal ID - nearly permanent	 minor injury to animal some training necessary
Fin clipping/V-notch - fish in a closed system (ex. trout) - lobster	0 ~ 1 in.	 no cost easy application fast application 	 no animal ID limited time of mark (regrowth/ molting) 	Internal anchor tag - striped bass - bl, sea bass	3/4+ in. 0.75 ~3 in.	- longer retention - more secure - unique animal ID	 specific training required slow application minor injury to animal
Polyethylene ribbon or disc - shellfish	0.15 - 0.20 1/8 to 3/4 in.	 low cost unique animal ID easy application 	 need hard surface life of glue limits tag life 	Passive integrated transponder (PIT) - turtles - salmon	5-10 1/2 to 1 in,	 nearly permanent unique animal ID electronic tag detection 	 not visible scanner needed to read tag # cost of scanners and tag injector
Visible implant elastomer (VIE) - turtles - salmon - hatchery releases	(varies) ~ 1/4 in.	 easy detection easy to tag large #s of fish quickly inexpensive color 	 no animal ID very expensive injector 	Archival tag (data storage) - various species - cod -YT flounder	200+ 1 to 2 in.	 temperature and depth records other options available 	 limited battery life tag must be retrieved to get data
T-bar anchor tag - most fish - scup, shark	0.45 2+ in.	 low cost unique animal ID fast application appropriate for many species 	 requires tagging gun training needed tags are shed easily 	Pop-up, satellite tag - tuna - shark - turtles - billfish	2,000+ 2 to 6 in.	 real time data location recorded tags do not need to be recovered 	 cost limited battery life satellite time is additional cost

Self Check

- What is the biggest downside of using recaptured fish to estimate growth
 - Tag loss
 - Have to capture lots of fish
 - Tag expense
 - Tags are harmful to fish

Aging Using Hard Structures

Structures used for aging

- Scales Most common
- Otoliths (sacrifice) 2nd most common
- Cleithra Esocidae (sacrifice)
- Opercula (sacrifice)
- Vertebrae Sharks (no spines, teeny otoliths)
- Fin Rays anything where scales don't work and you don't want to kill the fish

Scales

- Most widely used age method
 - Non lethal
- Count annual rings to get age
- Space between rings is proportional to growth
- Bias to underestimate older fish

Posterior

Age measurement through scales

Scales

Scales are like rings on a tree

- Fish grow faster in summer than winter
 - Faster in Salt also
- Scale Processing and Preparation
- Remove scales
- Scales go on scale cards (Gum Cards)
- Pressed and heated
- Use microfiche machine to read

Fish Scale Location

Mounting Scales

Mounting Scales

- A) Hydraulic Scale Press
 - Heated
- B) Manual Scale Roller
- C) Microfiche reader

- Annuli Dark annual bands laid down during winter slower growing periods
- Focus or origin of scale
- **Circuli** circular growth rings

2:2 Sockeye0:3 largemouth bass 23cm

Self Check

- The dark bands laid down during the winter slower growing periods on a fish's scale are called
 - Annuli
 - Focus
 - Circuli
 - Loci
- Scales are the most widely used structures for aging fish
 - True
 - False

Otoliths

Otoliths are the earbones of bony fish

- They come in pairs (3 total)
- Size and Shape vary widely
- Must sacrifice to collect
- More accurate than scales

Otoliths and fisheries science

- Unique properties:
 - Otolith growth is continual
 - Lack of resorption
 - Complete growth and environmental record
 - Crystalline structure
 - Holds trace metals
- Allows scientist to:
 - Determine temperature (Sr:Ca)
 - Determine salinity throughout life history
 - Anadromous migrations

Where the F are they?

- Posterior and dorsal to the eyes
- Takes practice
- Port samplers 30 sec

Otolith Process

- Whole otolith, clean and dry
- Measured
- Weighed
- Broken
- Burned
- Oiled
- Specimen ready to read!

Various ways to fracture Otoliths

• Spp dependant

Ventra

Otoliths

Age measurement through otoliths

• Yelloweye rockfish, age 82

Otolith uses

- Age determination
 - Daily ring counts
 - Annual ring counts
 - Radioactive isotopes
- Species identification
- Life history studies (elemental tracers)
- Paleoclimate studies (0₁₈)

Species identification

Westslope Cutthroat Trout (Oncorhynchus clarkii)

Weakfish (Cynoscion regalis)

Back Calculate growth

• Age = this 358 mm largemouth bass is 10 years old

Back Calculate growth

Back Calculation to get Weight

- Linear regression of scale radius and fish length
- 447 LMB from 15 lakes in Northern Wisconsin

Otolith Age Verification

- Otolith under normal microscope light
- Marked otoliths under fluorescent light
 - Mark otoliths by exposing fish to fluorescent chemicals

Otolith Age Verification

Thermal marking of Otoliths

- Change temp of water
 - Change growth rates
 - Lay down false anulit

Life History applied to age reading

 Life history events expressed in common otolith growth patterns?

Yelloweye rockfish, age 82

Age 0-20

Notice the reduction in increment widths from age 20 on.

Could this also represent the onset of maturity

Life History applied to age reading

Transition at 5, which is the reported age of maturity – Growth slows

Self Check

- Otoliths are typically only used for determining fish age
 - True
 - False
- What is the technique called that is used to prepare oroliths for age determination
 - Smash and grab
 - Break and burn
 - Slash and scope
 - Broke and poke

Cleithra - Esocidae (sacrifice)

Opercula (sacrifice)

Opercula (singular: operculum) Age-4 YEP, spring Age-4 SMB, spring

Other structures used for aging

- Vertebrae Sharks (no spines, teeny otoliths)
- Fin Rays anything where scales don't work and you don't want to kill the fish
- Spines

2003 Canadian Shark Research Lab. 02

© 2003 Canadian Shark Research Lab

Fin Rays & Spines

Dorsal spine from a spiny dogfish

Fin Ray sectioning

- Fix in Epoxy
- Cut thin slice (section)
- Examine under magnifgication

- A bluehead sucker opercle bone
- B flannelmouth sucker dentary bone
- C paddlefishand sectioned vertebra

Self Check

- Vertebrae are used to age sharks because they don't have scales and loose their teeth
 - True
 - False
- Many of the other structures used to age fish are similar to scales and Otoliths, they are hard and deposit annual bands similar to a tree
 - True
 - False

Life History applied to age reading

- Settle in 1st year
- Fast growth in first 5 years
- Mature at 5 years

Geoduck

17 years old; Born in 1995

74 years old; Born in 1938

Age measurement methods

- Scales
- Otoliths
- Vertebrae
- Rays/Spines
- Non Fish spp. ???
 - Clams
 - Urchins
 - Crabs
 - Shrimp
 - Octopuses
 - Sea Cucumbers

Age & Growth in fish Length Frequency Analysis Recapture of marked Individuals Hard structures Scales Otoliths Other hard Structures