Fisheries Management Techniques FT 211

Joel Markis
Asst Professor
Fisheries Technology
University of Alaska Southeast

Fisheries Technology

Chapter 14

Length, Weight, and Associated Indices

Outline

This Module will Contain 5 Main areas

- Importance of Length \& Weight
- Length measurements
- Weight measurements
- Length vs weight
- Length Frequency

Student Learning Outcomes

Students will be able to:

- Summarize length and weight measurements and why they are important in fisheries.
- Describe length measurement provide examples of the various techniques
- Describe weight measurement provide examples of the various techniques
- Describe the relationship between fish length and weight and provide examples of its usefulness
- Summarize length frequency information and how it can be used in fisheries

Length and weight data

Provide information that are cornerstones of fisheries research and management (aquaculture)

- Number and Size of fish determine its potential to provide benefits for commercial and recreational fisheries
- Estimates of:
- Growth
- Standing Crop (Biomass)
- Production (Tissue Growth kg/area/yr)
- True In Natural Settings, Laboratories, Hatcheries (4g fish)

Length Frequency Data

- One challenge for a fisheries manager is to identify problems and opportunities presented by existing population structures
- Altering mortality rates with length-limit regulations / slot limits

Introduction

- Population 'Structure’
- Number of individuals at each age / size in Population

Fish Length \& Weight

- Length defines legal size for harvest
- Relative number of fish in certain size categories
- Measure of management objectives (lots of big fish)
- Reproductively Mature (small fish don't reproduce)
- Weight can tell us about Biomass
- Harvest (metric tons)
- Standing Stock (kg/area)

Length Categories

- Could use as management targets

Halibut Coastwide

Halibut length restrictions for Guided Anglers

Area 2C Southeast AK

- 1 Fish
- <42" or >80" (reverse slot limit)

Area 3A Southcentral AK

- 2 fish
- 1 any size, 1 <29 in"

Eastern Bering Sea Tanner Crab Size Limit Reduction

- This research focused on analysis of the minimum size limit for Eastern Bering Sea Tanner crab fisheries. The goal of this work was to evaluate the merits of a reduced minimum size limit for the Tanner crab fisheries
- 51/2-51/4?
- Increased harvest quota
- Required more time to catch quota (lengthened the season)

History of fish L, W, \& Indices

- In 1940's made a bunch of ponds - irrigation / soil stabilization
- Mosquitos cause malaria
- Ponds with fish have less malaria
- Ponds can be used to raise fish for food
- Drain ponds look at biomass (weight of all fish)
- Biomass - relative plumpness
- Size structure indices based on length
- Fish condition (relative weight)

- L + W are cornerstone to fisheries community analysis
- Tell us a lot about population Health \& Condition

Self Check

- Measuring fish length and weight became important to determine pond productivity around the turn of the century
- True
- False
- Fish length can be used to help achieve management goals throught the use of size limits
- True
- False

Length

- Used to define legal size for harvest
- Commercial and recreational
- Numerous ways to measure length
- Standard Length
- Fork Length

- Total Length

Measuring Conventions

- Fish mouth closed
- Head left, tail right
- Measure fresh to avoid shrinkage and rigor mortis

Total Length

- Maximum length of the fish, with the mouth closed
- Mouth closed and nose up against a flat surface
- Do NOT pull a flexible tape measure along the curve of the fish

Fork Length

- Tip of snout to fork in tail

123456789101112131415161718192021222324252627282930

Standard Length

- Tip of snout to base of caudal peduncle
- Area where fleshy part of tail ends
- Not affected by tail damage

Length

- Typically in mm unless large fish (cm)
- Standard length (1)
- Fork length (2)
- Natural total length (3)
- Maximum total length (4)

Other Fish lengths

- WHY?

- Spawning (sockeye)
- Paddlefish / swordfish
- Missing parts

Other Species

- Crabs
- Clams
- Urchins
- Sea Cucumbers

> Carapace length Carapace width

Fish Girth

- Best measured with fabric tape
- String technique
- Measured around of the fattest part of the fish

Measuring devices

- Measuring boards
- 1 person to measure, 1 person to record
- Calipers - small fish
- Measuring tape - large marine species
- Electronic measuring boards - records automatically
- DIDSON - Sonar
- Video

Measuring boards

- Science in metric!
- 3 sided works best (rounded is nice too)
- Waterproof

Self Check

- There is one standard measurement for determining the length of a fish
- True
- False
- The image above represents the correct way to measure Fork Length
- True
- False

Fish Weight

- Weight of individuals \& biomass of populations is important in understanding fisheries
- Weight or Biomass is often used to describe fish abundance
- The net weight of fish can be more important than the number (easier to get)
- Pollock, Cod, Crab
- Fish eat and get bigger (or fatter)
- Increases in weight comes from incorporating carbon into tissues
- Increases in weight over time describes growth
- Growth is important in understanding the health or condition of fish and Fisheries

Weight Measurements

Wet weight - the weight of a fish or fish parts after removing any excess water

- Measured much more frequently (easier)
- Fish not sacrificed

Dry weight - the weight of a dried or dehydrated fish or fish parts

- Typically between 10-30\% of wet weight
- Have to sacrifice fish to measure
- Used in energetics and many diet studies

Fish Weight

- Collected using scales of various styles
- Can measure individuals or groups
- Is more labor intensive than collecting length info

Fish Weight

- Remove excess moisture on fish
- Periodic calibration of scales
- Remove excess moisture on scale
- Tare often (every fish)
- Account for wind \& fish, boat motion
- Smaller fish are harder

Weighing Devices

- Spring loaded scales
- Electronic scales (battery-powered) with digital readout
- Hanging scales measure fish in bulk or large fish
- Commercial scale

Considerations

- Does gear bias influence length and weight measures?
- How many fish measured or subsampled for measurement?
- More is better

Vs.

Gear Bias in Length and Weight

Considerations (cont.)

- Does gender influence length \& weight measures?
- Spawning salmon - kype
- Halibut - females are larger
- Weight more error-prone than length.
- This is true for field measures
- Calibration of scales, wind, boat movement
- Fish movement etc. can influence weight

Preserved specimens

- Weight goes up about 8%
- Length goes down about 2%
- Use fresh specimens if possible

Self Check

- Weighing fish is typically harder than measuring length
- True
- False
- An increase in weight over time describes
- Weight
- Growth
- Biomass
- Condition
- None of the above

Fish Length \& Weight

- Growth described by weight at age or weight gain/year
- Weight \& Length...condition

Length - Weight Relationships

Length-Weight Relationships

- So length can be converted to weight or vice versa
- Condition - variation from expected weight at a given length

Pacific Halibut Length vs Weight

- 63.7" $5.3^{\prime}=100 \mathrm{lb}$
- 79.1" $-6.5^{\prime}=200 \mathrm{lb}$

Length - Weight Relationships

Two objectives of LW data

- Mathematically describe L \& W relationship for conversion from one to another
- Measure of variation of expected weight for length of individual or group or organisms as indications of
- well being, fatness, gonad activity, CONDITION
- $W=$ weight; $L=$ length and a and b are parameters;
- To get ab have to do a linear regression of L and W

Transformation

- Estimate a and b using linear regression
- $Y=m x+b$
- Log10(W) $=\log 10(a)+b * \log 10(L)$
- $Y=$ intercept + slope * X

Length - Weight Relationships

Indices of Condition

- Fulton condition factor K
- K=100(W/L3)
- Relative condition factor
- Relative weight
- $\mathrm{W}_{\mathrm{r}}=100\left(\mathrm{~W} / \mathrm{W}_{\mathrm{s}}\right)$
- All measures of Condition

Halibut Example Weight at Age

- Halibut coastwide aggregate estimated female average weight-at-age trends from setline survey and fishery data over the last four decades.
- Fish are getting smaller
- Managed by weight
- Takes more fish
- Bycatch also by weight*

Self Check

- By looking at the relationship between length and weight we can tell something about the health or condition of a fish or fish stock
- True
- False
- A fish weighing more at the same size then the average fish from the population could be said to
- Be In good condition
- Be In poor condition
- Be Older than the other fish in that year class
- Have a relative lower weight

Length Frequency Histograms

- Lengths of fish grouped in bins
- Can tell us valuable info about population
- Easier to collect than Length \& Weight

Length-Frequency Histograms reflect:

- Reproduction
- Recruitment
- Growth
- Mortality

- Age
- Changes over time Help:
- identifying low recruitment
- age class problems
- slow growth
- excessive annual mortalities

Length Frequency Guidelines

- Sample 100 fish - measure length
- Bin sizes (at least 5-7)
- $30-\mathrm{cm}$ fish... $1-\mathrm{cm}$ interval
- $60-\mathrm{cm}$ fish... $2-\mathrm{cm}$ interval

W - $150-\mathrm{cm}$ fish... $5-\mathrm{cm}$ interval

Guidelines

- Y-axis
- Absolute number of fish per length group
- Percentage in each length group
- X-axis
- Bin sizes

Length Distribution

- Length distribution of same age fish
- Some large
- Some small
- Majority Average

LF Histograms - Spp Length Distribution

- Fewer individuals as fish get larger
- Lack of small individuals
- Gear Bias

LF Histograms - Age Class

- See Modes when plot multiple age classes together
- Older = harder to distinguish

LF Histograms - Age Class

- Strong 3 year age class
- Still healthy $1 \& 2$

Length-Frequency Histograms

- Missing 260-320 mm individuals
- Poor recruitment
- Mortality event
- Flooding
- Freeze
- Lots of predators
- Good 240-250 class

Length-Frequency Histograms

- Lack of Recruitment
- Loss of spawning biomass
- Poor recruitment
- Mortality event
- Flooding
- Freeze
- Lots of predatc

Self Check

- How many ag4e classes would you guess are present in the above image
- 2
- 3
- 4
- 5-7

- What can we tell about a fish population from looking at length frequency information
- Reproduction
- Recruitment
- Growth
- Mortality
- Age
- All of the above

Recap

- Importance of Length \& Weight
- Length measurements
- Weight measurements
- Length vs weight
- Length Frequency

