Fisheries Management Techniques FT 211

Joel Markis Asst Professor Fisheries Technology University of Alaska Southeast

Fisheries Technology

Chapter 14

Length, Weight, and Associated Indices

Outline

This Module will Contain 5 Main areas

- Importance of Length & Weight
- Length measurements
- Weight measurements
- Length vs weight
- Length Frequency

Student Learning Outcomes

Students will be able to:

- Summarize length and weight measurements and why they are important in fisheries.
- Describe length measurement provide examples of the various techniques
- Describe weight measurement provide examples of the various techniques
- Describe the relationship between fish length and weight and provide examples of its usefulness
- Summarize length frequency information and how it can be used in fisheries

Length and weight data

Provide information that are cornerstones of fisheries research and management (aquaculture)

- Number and Size of fish determine its potential to provide benefits for commercial and recreational fisheries
- Estimates of:
 - Growth
 - Standing Crop (Biomass)
 - Production (Tissue Growth kg/area/yr)
- True In Natural Settings, Laboratories, Hatcheries (4g fish)

Length Frequency Data

- One challenge for a fisheries manager is to identify problems and opportunities presented by existing population structures
 - Altering mortality rates with length-limit regulations / slot limits

Introduction

- Population 'Structure'
 - Number of individuals at each age / size in Population

Fish Length & Weight

- Length defines legal size for harvest
- Relative number of fish in certain size categories
 - Measure of management objectives (lots of big fish)
 - Reproductively Mature (small fish don't reproduce)
- Weight can tell us about Biomass
 - Harvest (metric tons)
 - Standing Stock (kg/area)

Length Categories

• Could use as management targets

Halibut Coastwide

Halibut length restrictions for Guided Anglers

Area 2C Southeast AK

- 1 Fish
- <42" or >80" (reverse slot limit)

Area 3A Southcentral AK

- 2 fish
- 1 any size, 1 < 29 in"

Eastern Bering Sea Tanner Crab Size Limit Reduction

- This research focused on analysis of the minimum size limit for Eastern Bering Sea Tanner crab fisheries. The goal of this work was to evaluate the merits of a reduced minimum size limit for the Tanner crab fisheries
- 51/2 51/4?
 - Increased harvest quota
 - Required more time to catch quota (lengthened the season)

History of fish L, W, & Indices

- In 1940's made a bunch of ponds irrigation / soil stabilization
 - Mosquitos cause malaria
 - Ponds with fish have less malaria
- Ponds can be used to raise fish for food
 - Drain ponds look at biomass (weight of all fish)
 - Biomass relative plumpness
 - Size structure indices based on length
 - Fish condition (relative weight)
- L + W are cornerstone to fisheries community analysis
 - Tell us a lot about population Health & Condition

Self Check

 Measuring fish length and weight became important to determine pond productivity around the turn of the century

- True

– False

- Fish length can be used to help achieve management goals throught the use of size limits
 - True
 - False

Length

- Used to define legal size for harvest
 - Commercial and recreational
- Numerous ways to measure length
 - Standard Length
 - Fork Length
 - Total Length

Measuring Conventions

- Fish mouth closed
- Head left, tail right
- Measure fresh to avoid shrinkage and rigor mortis

Fin fish pectoral fin

Total Length

- Maximum length of the fish, with the mouth closed
- Mouth closed and nose up against a flat surface
- Do NOT pull a flexible tape measure along the curve of the fish

• Tip of snout to fork in tail

Standard Length

- Tip of snout to base of caudal peduncle
 - Area where fleshy part of tail ends
 - Not affected by tail damage

Length

- Typically in mm unless large fish (cm)
 - Standard length (1)
 - Fork length (2)
 - Natural total length (3)
 - Maximum total length (4)

Other Fish lengths

- WHY?
 - Spawning (sockeye)
 - Paddlefish / swordfish
 - Missing parts

Other Species

- Crabs
- Clams
- Urchins
- Sea Cucumbers
- Shrimp

0,7mm

Fish Girth

- Best measured with fabric tape
- String technique
- Measured around of the fattest part of the fish

Measuring devices

- Measuring boards
 - 1 person to measure, 1 person to record
- Calipers small fish
- Measuring tape large marine species
- Electronic measuring boards records automatically
- DIDSON Sonar
- Video

Measuring boards

- Science in metric!
- 3 sided works best (rounded is nice too)
- Waterproof

Self Check

- There is one standard measurement for determining the length of a fish
 - True
 - False
- The image above represents the correct way to measure Fork Length
 - True
 - False

Fish Weight

- Weight of individuals & biomass of populations is important in understanding fisheries
- Weight or Biomass is often used to describe fish abundance
 - The net weight of fish can be more important than the number (easier to get)
 - o Pollock, Cod, Crab
- Fish eat and get bigger (or fatter)
 - Increases in weight comes from incorporating carbon into tissues
- Increases in weight over time describes growth
 - Growth is important in understanding the health or condition of fish and Fisheries

Weight Measurements

Wet weight – the weight of a fish or fish parts after removing any excess water

- Measured much more frequently (easier)
- Fish not sacrificed

Dry weight – the weight of a dried or dehydrated fish or fish parts

- Typically between 10 30% of wet weight
- Have to sacrifice fish to measure
- Used in energetics and many diet studies

Fish Weight

- Collected using scales of various styles
- Can measure individuals or groups
- Is more labor intensive than collecting length info

Fish Weight

- Remove excess moisture on fish
- Periodic calibration of scales
- Remove excess moisture on scale
- Tare often (every fish)
- Account for wind & fish, boat motion
 - Smaller fish are harder

Weighing Devices

BBBRR

- Spring loaded scales
- Electronic scales (battery-powered) with digital readout
- Hanging scales measure fish in bulk or large fish
- Commercial scale

Considerations

- Does gear bias influence length and weight measures?
- How many fish measured or subsampled for measurement?
 - More is better

Gear Bias in Length and Weight

Considerations (cont.)

- Does gender influence length & weight measures?
 - Spawning salmon kype
 - Halibut females are larger
- Weight more error-prone than length.
- This is true for field measures
 - Calibration of scales, wind, boat movement
 - Fish movement etc. can influence weight

Preserved specimens

- Weight goes up about 8%
- Length goes down about 2%
- Use fresh specimens if possible

Self Check

- Weighing fish is typically harder than measuring length
 - True
 - False
- An increase in weight over time describes
 - Weight
 - Growth
 - Biomass
 - Condition
 - None of the above

Fish Length & Weight

- Growth described by weight at age or weight gain/year
- Weight & Length...condition

Length – Weight Relationships

Length-Weight Relationships

- So length can be converted to weight or vice versa
- Condition variation from expected weight at a given length

Length (Lower jaw to Caudal fork) cm

Pacific Halibut Length vs Weight

Length – Weight Relationships

Two objectives of LW data

- Mathematically describe L & W relationship for conversion from one to another
- Measure of variation of expected weight for length of individual or group or organisms as indications of
 - well being, fatness, gonad activity, CONDITION
 - W = weight; L = length and a and b are parameters;
 - To get ab have to do a linear regression of L and W

Transformation

- Estimate a and b using linear regression
- Y=mx+b
- Log10(W) = Log10(a) + b * Log10(L)
- Y = intercept + slope * X

Length – Weight Relationships

Indices of Condition

- Fulton condition factor K
 - $K = 100(W/L^3)$
- Relative condition factor
- Relative weight
 - $W_r = 100(W/W_s)$
- All measures of Condition

Halibut Example Weight at Age

- Halibut coastwide aggregate estimated female average weight-at-age trends from setline survey and fishery data over the last four decades.
- Fish are getting smaller
- Managed by weight
 - Takes more fish
- Bycatch also by weight*

Self Check

- By looking at the relationship between length and weight we can tell something about the health or condition of a fish or fish stock
 - True
 - False
- A fish weighing more at the same size then the average fish from the population could be said to
 - Be In good condition
 - Be In poor condition
 - Be Older than the other fish in that year class
 - Have a relative lower weight

Length Frequency Histograms

- Lengths of fish grouped in bins
- Can tell us valuable info about population
- Easier to collect than Length & Weight

Length-Frequency Histograms reflect:

- Reproduction
- Recruitment
- Growth
- Mortality
- Age
 - Changes over time Help:
 - o identifying low recruitment
 - o age class problems
 - o slow growth
 - o excessive annual mortalities

Length Frequency Guidelines

- Sample 100 fish measure length
- Bin sizes (at least 5-7)
 - 30-cm fish... 1-cm interval
 - 60-cm fish... 2-cm interval
 - 150-cm fish... 5-cm interval

Guidelines

- Y-axis
 - Absolute number of fish per length group
 - Percentage in each length group
- X-axis
 - Bin sizes

Length Distribution

- Length distribution of same age fish
 - Some large
 - Some small
 - Majority Average

LF Histograms – Spp Length Distribution

- Fewer individuals as fish get larger
 - Lack of small individuals
 - o Gear Bias

LF Histograms – Age Class

- See Modes when plot multiple age classes together
- Older = harder to distinguish

LF Histograms – Age Class

- Strong 3 year age class
 - Still healthy 1 & 2

Length-Frequency Histograms

- Missing 260 320 mm individuals
 - Poor recruitment
 - Mortality event
 - Flooding
 - o Freeze
 - \circ Lots of predators
- Good 240 250 class

Length-Frequency Histograms

Lack of Recruitment

- Loss of spawning biomass
- Poor recruitment
- Mortality event
 - Flooding
 - o Freeze
 - \circ Lots of predatc

Self Check

- How many ag4e classes would you guess are present in the above image
 - 2
 - 3
 - 4
 - 5-7

- What can we tell about a fish population from looking at length frequency information
 - Reproduction
 - Recruitment
 - Growth
 - Mortality
 - Age
 - All of the above

- Importance of Length & Weight
- Length measurements
- Weight measurements
- Length vs weight
- Length Frequency