Fisheries Management Techniques FT 211

Joel Markis Asst Professor Fisheries Technology University of Alaska Southeast

Fisheries Technology

Chapter 7

Active Capture Techniques

Outline

This Module will Contain 6 Main areas

- Active Fish Capture
- Towed Nets
- Dredges
- Surrounding Nets
- Other active Gear
- Gear Selection

Student Learning Outcomes

Students will be able to:

- Describe active fish capture techniques and be able to identify the three main categories
- Describe the use of towed nets and provide examples
- Describe the use of dredges and provide examples
- Describe the use of surrounding nets and provide examples
- Describe other active capture techniques and provide examples
- Summarize gear selection and what goes into selecting the right equipment for the conditions

Talk about active capture....

- Involves using moving nets or gears to collect fish, shellfish, or macroinvertebrates
- Difference between passive is that with passive you rely on fish to move into a stationary net or trap (or hook)
- Not always clear
 - Electrofishing, intoxicants, angling, Screw Traps

- Main gear types enclose or sweep
 - Specific area
 - Operate over a specified time
 - \circ accurately defined unit of effort

FRONT VIEW

SIDE VIEW

- Accurately define sampling effort is very important
 - when we need an index of abundance
 - Typically what we do in science

Standardization of effort

- Pull trawl fixed time at fixed speed
- Sweeping specific area
- Allows for extrapolation

Active vs Passive

Passive

- Gear does not enclose or cover a specific area
- May not accurately reflect abundance due to the behavior of the fish
- Can be set quickly from boat and requires very little labor
 - not as quick in collection of data

Active

- Gear is mobile in space and time
- Samples can be collected more rapidly but at a higher cost
- Usually need larger vessel to handle active gear
- Two or more people to safety and correctly operate the gear

- Shorter sampling periods allow for greater sample size
 - lots of tows vs 1 trap deployment
 - increases statistical precision of indices of abundance
 - cover more area and ensure more complete sampling
- More precise picture of fish spatial distribution and habitat use
- Time of capture can be determined more precisely
 - Time of capture important
 - Diet studies
 - Feeding rate
 - \circ Behavior
 - o Movement
- Active gears can catch less fish per unit time
 - Disadvantage if need big number of fish for your sample

Requirements

- Larger boats
- More manpower
- Less sampling time than passive gear

3 Main Gear Types

- Towed Nets (Trawls)
- Dragged Nets (Dredges)
- Surrounding Nets (Seines)
- Others
 - Screw Traps
 - Spearfishing
 - Cast nets
 - Electrofishing
- Science
 - Scaled down commercial version

Net Material and Construction

- Natural Materials
 - cotton, hemp, linen (old school)
 - \circ Thick, heavy
 - Rotting is a problem
- Synthetic materials
 - polyethylene, polypropylene
 - \circ Stronger, thinner
 - Less prone to decay

Mesh Size

Bar length - distance knot to knot along diagonal

• Stretch measure - knot to knot distance when mesh is stretched

Hanging ratio (E)

- E = rope length / stretched length of netting
- Or use hanging % = 100 * (1 E)
- Range for trawls (E = 0.6 0.8)

Self Check

- Active capture techniques are more standardized and systematic than passive
 - True
 - False
- Which of the following is not an active capture technique
 - Dredge
 - Pot
 - Trawl
 - Sein

Towed Nets (Trawls)

- Funnel-shaped with cod-end (narrow backend)
- 2 Primary types
 - Beam Trawl
 - Otter Trawls
- 3 Positions
 - Surface
 - Midwater
 - bottom

Trawls (Draggers)

Trawler

- Large boats
- Stern Reel aft (Stern)
 - Sometimes 2
 - Ramp or chute in stern
- 2 Booms midship (Side)
 - Haul alongside
 - Shrimp
- 2 Boat Operations (paired)
 - 1 net

Beam Trawls

- Fixed width (beam)
- Sweep fixed area consistently
- Somewhat cumbersome if beam is large

Beam Trawls

Beam Trawl

Otter Trawls

- Otter boards or trawl doors hold net open
 - Oval or square doors
 - Reinforced skids
- Mouth width depends on speed (inconsistent)
- Fished
 - Surface
 - Midwater
 - Bottom

Parts of an Otter Trawl

Parts of a Trawl

ADF&G Research Trawling

- Assess crab abundance
- Otter Trawl
 - Bottom Trawl
- 30 min tows at gridded stations

- Spool net out
- Attach doors
- Deploy net
- Control size with speed
- Retrieval is opposite

Trawling

Otter Trawls

- Otter boards or trawl doors hold net open
- Oval or square doors
 - Reinforced skids
- Mouth width depends on speed (inconsistent)

Midwater Trawls

- Depth determined by boat speed and warp out
- Determined by angle or by pressure sensor on net

Midwater Trawls (cont.)

- Four Seams
- Coarse mesh at mouth
- Finer mesh toward cod-end
- Hydrodynamics
 - Key to good tow

Use of Midwater Trawls

- Sample pelagic fish
- Ground truthing for acoustic surveys
- Sampling larvae and juveniles
 Small (1 mm mesh)

Bottom Trawling

Bottom Trawl Modifications

- Contact the bottom to capture Demersal spp
- Modified Otter Trawl
- Rollers on the sweep chain
- Tickler chains on the sweep chain
- Plastic strips on the bag to prevent snagging (Chafe Gear)
- Size & material of doors

Bottom Trawl Modifications

Evaluating Gear Performance

- Did net catch fish?
- Net hang-up on bottom?
- Crossed or twisted trawl doors?
- Cod end come undone?

Trawling Pros & Cons

Pros

- Fish in good condition (unless deep trawls... pressure changes)
- For release of live specimens, short trawls (5-15 min)
- Quantitative index of pop abundance

Cons

- Can't sample when bottom is irregular (stobs, rocks)
- Need powerful boat (40 hp or greater Much Greater)
- By-catch of other species?

Trawling

https://www.youtube.com/watch?v=BnmGbDN278Y

Technology to Evaluate Gear

- Depth/Pressure sensors (how deep)
- Laser distance measures (how big is net)
- Video camera mounted on gear (what did we miss)
- Pressure sensors (how much fish)

Cam Trawl Midwater

Cameras in Nets

Cam Trawl

Stereo Cameras in the trawl

Video Recognition

- Facial recognition (Homeland Security)
 - Used to recognize and measure fish
- Digital video cameras record fish brought onboard / discarded as bycatch
- Computers identify species
 - Estimate weight (using length)
- Allow computers to tally the catch for each species

Trawls

Self Check

- The above picture represents what kind of trawl?
 - Otter
 - Beam
 - Dredge
 - None of the above

- Bottom trawls have special modifications because they come into contact with the bottom of the ocean
 - True
 - False

Dredges

- A rigid frame with a chain net dragged across the bottom of the ocean
- Uses teeth or water jets to dig into substrate
- Collects
 - Scallops
 - Oysters
 - Clams
 - Sea Cucumbers

Dredges

- Frame
- Rollers
- Sweep Chains
- Chain Bag
- Chafe gear

Dredges

Hydraulic dredge

- Uses water pressure to loosen substrate
- Used for clams & embedded invertebrates

Bottom Trawl vs Dredge

– very similar

Dredges - Heavy-framed samplers designed to collect primarily embedded macroinvertebrates such as scallops and clams

No Doors

Dredge vs. Trawl

Pros

- One of the only effective ways to collect scallops, clams, oysters
- Fixed width for calculating area sampled
- Less prone to malfunction or tangle than trawls

Cons

- Destroys benthic environment & Habitat
- Cannot dredge in rocky areas

Self Check

- What is the primary difference between a dredge and a bottom trawl
 - The critters they collect
 - Dredges have a rigid metal tow frame
 - Dredges are more destructive
 - All of the above
- Click on the chafe gear on the dredge in the above image

Surrounding or Encircling Gear

- Beach seines, Purse seines, Lampara nets
- Trap fish inside fence of mesh
- Area sampled is fairly standard

Seine components (cont)

- Cork / Float line
 - Cork, Styrofoam, or plastic
 - Hold net up
- Lead line
 - lead weights or lead core polypropylene line (both)
- Mesh
 - Sizes vary depending on target species and habitat

Seine components

- Mesh forms the wall of the seine
- Bunt section of mesh wall where fish are concentrated
- Bag small pocket sewn into the bunt for further fish concentration
- Dimensions vary widly

Fishing a beach seine

- Capture efficiencies varies
 - Diel
 - Seasonal
 - Species

Fishing a beach seine (cont.)

- Fished near shore
- No obstructions to lift lead line / Snag
- Set in semi-circle retrieve both ends
- Set perpendicular to shore

Beach Seining

Stick Seine / Minnow seine

• Smaller seine with sticks or dowels connected to

Purse seines

- For pelagic (open water) species
- Closes up like a purse

Fishing a purse seine

- Wall of mesh encircles fish
- Pull purse line from one or both ends
- Bottom of net cinches shut the drawstring on a purse

Lampara Net

- Typically used to fish smaller bait fish
 - Long Cork Line
 - Short Lead line

Self Check

- Lampara nets are typically fished for larger species like Tuna and Sailfish
 - True
 - False
- Click on the cork line in the above picture

- Push nets
 - Rectangular rigid frame with mesh behind
 - Pushed in front of small boats sample fish fry

- Neuston nets
 - Neuston is the collective term for the organisms that float on the top of water
 - Sample the surface fauna of the ocean
 - Juvenile

- Lift nets (crab rings)
 - three line bridle on a bowl of mesh
 - bait the mesh or attract fish over net with light
 - lift the bowl and trap the fish (or crabs)

- Pop nets
- Rectangular frame of mesh
- Set on bottom
- Released to pop up and form a box

- Dip nets
 - Circular net on a pole
 - Lift fish from water during electrofishing
 - Remove fish from containers

- Fish Wheel
 - Ferris wheel for fish
 - Native Americans harvest anadromous fish this way

- Rotary Screw Trap
 - Capture out-migrating fish
 - Typically Salmon Smolt in PNW
- Trap spins with current of river
 - Like fish wheel

Incline Plane Trap

- Out-migrating juveniles
- Uses water motion to operate conveyor belt that places fish in holding tank

- Cast nets (requires skill)
 - Circle of mesh
 - Weighted edges
 - Draw-string for cinching net closed
 - Usually near-shore for bait fish

- Angling
 - Rod and reel sampling
 - To collect brood stock
 - To collect fish in good shape for radio telemetry studies
 - When other gears won't work

Other Active Sampling Gear

- Spears
 - Trident
 - Spear with barb
 - Usually clear water tropical reef fish
 - Hawaiian sling or speargun

Spear Fishing

Self Check

- Identify the active capture technique pictured above
 - Pop net
 - Lift net
 - Umbrella net
 - Neuston net

- A rotary screw trap is primarily used for capturing outmigrating juvenile fish
 - True
 - False

Gear Selection

- Why do you need the fish?
 - Relative abundance or density estimate trawl
 - Live specimens for study short trawl
 - Tissue requirements or diet studies seine, spear, hook and line

Examples

Juvenile Coho salmon – OR & WA

- 495-m long juvenile seine set in transects up & down coast
- catch showed juveniles migrate north in ocean

Examples (cont.)

Rainbow trout - Lake Washington

- 600-m long, 37-m deep, 25mm beach seine
- collect fish for food habit study

Gear Selection

- What is purpose of collection and goals of study?
- What habitat are you sampling?
- Behavior and size of target organism (s)
- Time, budget, personnel and vessels available
- Three broad purposes of fish collection:
 - Density or relative abundance
 - Collecting live specimens or whole specimen samples
 - Collecting accessory information:
 - o scale samples, tissue samples, stomach contents

What is the Environment like?

- Shallow beach seine
- Open water purse seine
- Smooth bottom otter trawl
- Rough bottom scallop dredge, Tickle gear

Environment

- Active gear prone to snagging on obstructions
- Water depth can limit gear choices:
 - Beach and haul seines shallow water
 - Otter trawls deep water
 - Angling difficult bottom areas
- Active fish capture methods are harder in rivers and stream
 - Obstructions common
 - Current
 - Make electrofishing common in these habitats

What is life history of fish?

- Demersal Otter trawl
- Pelagic Purse seine / midwater trawl
- Associate with structure Hook and line
- Littoral zone Beach seine

Life History

Animal behavior and gear selection:

- Where does fish live?
 - Demersal / benthic, pelagic?
- Do bottom fishes live near structures or not
 - Coral reef fishes and largemouth bass
- Does species live close to shore?
- Diel behavior, seasonal behaviors, and ontogenetic
- Response by fishes to gear being used
 - Very important when establishing abundance index or density
- Influence of fish size to gear selection:
 - Smaller fish to escape large mesh

Gear selectivity

- Large, fast swimmers (tuna) outswim active gears
- Small fish pass through coarse mesh of trawls
- Ontogenetic changes in habitat affect selectivity
 - Juveniles inshore (beach seine)
 - Adults offshore (otter trawl)

Sampling Problems

Habitats with obstructions

- Obstruction interferes with sampling efficiency
- Sampling gear unable to sample habitat where fish live or hide
 Open Ocean Habitats

Deepwater habitats in small lakes

- Shape of lake limits gear choices lake may be too small for boat needed to handle deep water trawl or access may be hard.
- In these instances gill nets are sometimes appropriate Large rivers
- High currents and debris make most sampling hard lce cover
- Spearing and angling used
 - Gill nets sometimes

Lift nets

• Nets put in water – difficult to do though

Self Check

- It is important to take into consideration the environment, habitat and life history of the fish you are interested in when selecting capture equipment
 - True
 - False
- A bottom trawl would be an appropriate selection for a demersal species that lives in a high structure area
 - True
 - False

- Active capture
- Towed Nets
- Dredges
- Surrounding Nets
- Other active Gear
- Gear Selection